
 AVF Control Number: EDS19980304RSC08-2.1
 DATE COMPLETED
 BEFORE ON-SITE: 10 JUN 98
 AFTER ON-SITE: 08 JUL 98

 Ada COMPILER
 VALIDATION SUMMARY REPORT:
 Certificate Number: 980613e2.1-026
 Rational Software Corporation
 RATIONAL APEX ADA 95/83, SPARC SOLARIS TO POWERPC FAMILY FOR LYNXOS
 Version 3.0.0 (pre-release)
 Sun Ultra Enterprise 2 model 2300 under Solaris , 2.5.1 =>
 Motorola PowerStack/PowerPC 603 under LynxOS 2.5.1

 (Final)

 Prepared By:
 Ada Validation Facility
 Electronic Data Systems
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.

 TABLE OF CONTENTS

Preface

Validation Certificate

Declaration of Conformance

CHAPTER 1 INTRODUCTION

 1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
 1.2 ACVC TEST CLASSES 1-1
 1.3 LEGACY TESTS. 1-2
 1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

 2.1 INAPPLICABLE TESTS. 2-1
 2.2 MODIFICATIONS 2-3
 2.3 UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED . 2-11
 NEEDS ANNEXES

CHAPTER 3 PROCESSING INFORMATION

 3.1 VALIDATION PROCESS. 3-1
 3.2 MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES 3-2
 3.2.1 Macro Parameters. 3-2
 3.2.1.1 Package ImpDef. 3-5
 3.2.1.2 Package ImpDef.Annex_C. 3-11
 3.2.1.3 Package ImpDef.Annex_D. 3-13
 3.2.1.4 Package ImpDef.Annex_G. 3-15
 3.3 WITHDRAWN TESTS 3-17

APPENDIX A COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

APPENDIX B POINTS OF CONTACT

APPENDIX C REFERENCES

 i

 AVF Control Number: EDS19980304RSC08-2.1

PREFACE

This report documents the validation testing of an Ada 95 implementation.
This testing was conducted according to the Ada Compiler Validation
Procedures version 5.0 using the Ada Compiler Validation Capability test
suite version 2.1, and completed 13 June 1998.

The successful completion of validation testing is the basis for the Ada
certification body's issuance of a validation certificate and for subsequent
registration of derived implementations. A copy of the validation
certificate 980613e2.1-026 and its attachment which were awarded for this
validation are presented on the following two pages. Validation testing does
not ensure that an implementation has no nonconformities to the Ada 95
standard other than those, if any, documented in this report. The compiler
vendor declares that the tested implementation contains no deliberate
deviation from the Ada 95 standard; a copy of this Declaration of Conformance
is presented immediately after the certificate pages.

This report has been reviewed and approved by the signatories below. These
organizations attest that, to the best of their knowledge, this report is
accurate and complete; however, they make no warrant, express or implied,
that omissions or errors have not occurred.

 Ada Validation Facility
 Phil Brashear, AVF Manager
 Electronic Data Systems
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.

_________________________________ _________________________________
Ada Validation Organization Ada Joint Program Office
Director, Computer and Software Director
 Engineering Division Center for Information Management
Institute for Defense Analyses Defense Information Systems Agency
Alexandria VA 22311 Alexandria VA 22041
U.S.A. U.S.A.

 (Insert copy of certificate here)

Results Summary for 980613e2.1-026

 Specialized Needs Annexes

Note: Tests allocated to these annexes are processed only when the vendor
claims support.

 --
| SPECIALIZED | Total | With- | Passed | Inappli- | Unsup- |
NEEDS ANNEXES		Drawn		cable	ported
C Systems					
Programming	24	2	21	1	0
& required Section 13	161	1	160	0	0
(representation support)	---	---	---	---	---
	185	3	181	1	0
 --
| D Real-Time | | | | | |
| Systems | | | | | |
 (which requires Annex C) | 58| 5| 46| 0| 7|
 --
| E Distributed | | | | | |
| Systems | 26| 0| 0| 0| 26|
 --
| F Information | | | | | |
| Systems | 21| 0| 0| 0| 21|
 --
| | | | | | |
| G Numerics | 29| 1| 28| 0| 0|
 --
| H Safety and | | | | | |
| Security | 30| 0| 0| 0| 30|
 --

 Attachment to VC 980613e2.1-026:
 Quantitative Validation Test Results

DECLARATION OF CONFORMANCE
__

 Customer: Rational Software Corporation

 Ada Validation Facility: Electronic Data Systems
 4646 Needmore Road, Bin #46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.

 ACVC Version: 2.1

 Ada Implementation

 Ada Compiler Name and Version: RATIONAL APEX ADA 95/83,
 SPARC SOLARIS TO POWERPC FAMILY

 FOR LYNXOS
 version 3.0.0 (pre-release)

 Host Computer System: Sun Ultra Enterprise model 2300
 Solaris, 2.5.1

 Target Computer System: Motorola PowerStack/PowerPC 603
 LynxOS 2.5.1

 Declaration

 I, the undersigned, declare that I have no knowledge of deliberate
 deviations from the Ada Language Standard ANSI/ISO/IEC 8652:1995,
 FIPS PUB 119-1 other than the omission of features as documented
 in this Validation Summary Report.

 ______________________________ _____________
 Customer Signature Date

 CHAPTER 1

 INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro97] against the Ada Standard [Ada95] using the Ada
Compiler Validation Capability (ACVC) Version 2.1. This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro97].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG97].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). Validated status is awarded only to the
implementation identified in this report. Copies of this report are
available to the public from the AVF that performed this validation.

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to the Ada Validation
Organization. For all points of contact see Appendix B.

1.2 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
most Class L tests are expected to produce errors at compile time and link
time,respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK_FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler

 1-1

INTRODUCTION

optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 contains constants of type SYSTEM.ADDRESS.
These constants are used by selected Section 13 tests and by isolated tests
for other sections. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for the Input-Output
features of the Ada Standard, defined in Annex A of [Ada 95]. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. If these
units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the Class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. In most
Class L tests, errors are expected at link time, and execution must not
begin. Other L tests may execute and report the appropriate result.

For some tests of the ACVC, certain implementation-specific values must be
supplied. Two insertion methods for the implementation-specific values are
used: a macro substitution on the source file level of the test, and linking
of a package that contains the implementation specific values. Details are
described in [UG97]. A list of the values used for this implementation,
along with the specification and body of the package (and children applicable
to any of Specialized Needs Annexes being tested) are provided in Section 3.2
of this report.

In addition to these anticipated test modifications, changes may be required
to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are
described in Section 2.2.

For the validation of each Ada implementation, a customized test suite is
produced by the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see Section
2.1), and possibly removing some inapplicable tests (see Section 2.1 and
[UG97]).

1.3 LEGACY TESTS

ACVC 2.1 consists of legacy tests and tests specific to Ada 95. The legacy
tests were taken from ACVC 1.12 with possibly minor modifications to remove
incompatibilities with Ada 95. The remaining tests were developed in order
to test new features of Ada 95. A consequence of this approach is that the
naming conventions for tests are not uniform. The test name of a legacy test
always refers to the Ada 83 Standard, even if the feature covered by the test
was moved to a different section in [Ada95].

 1-2

 INTRODUCTION

1.4 DEFINITION OF TERMS

Acceptable A result that is explicitly allowed by the grading criteria
result of the test program for a grade of passed or inapplicable.

Ada compiler The software and any needed hardware that have to be added to
 a given host and target computer system to allow
 transformation of Ada programs into executable form and
 execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide, and the template for the Validation Summary
(ACVC) Report.

ACVC The part of the certification body that maintains the ACVC.
Maintenance
Organization
(AMO)

Ada An Ada compilation system, including any required runtime
Implementation support software, together with its host computer system and
 its target computer system.

Ada Joint The part of the certification body which provides policy and
Program Office guidance for the Ada certification system.
(AJPO)

Ada Validation The part of the certification body which carries out the
Facility (AVF) procedures required to establish the compliance of an Ada
 implementation.

Ada Validation The part of the certification body that provides technical
Organization guidance for operations of the Ada certification system.
(AVO)

Certification The organizations (AJPO, AVO, AVFs), collectively responsible
Body for defining and implementing Ada validation policy, includ-
 ing production and maintenance of the ACVC tests, and
 awarding of Ada validation certificates.

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part
 of a program and also for all or part of the data necessary
 for the execution of the program; executes user-written or
 user-designated programs; performs user-designated data
 manipulation, including arithmetic operations and logic

 1-3

INTRODUCTION

 operations; and that can execute programs that modify
 themselves during execution. A computer system may be a
 stand-alone unit or may consist of several inter-connected
 units.

Conformity Fulfillment by a product, process or service of all
 requirements specified.

Customer An individual or corporate entity who enters into an
 agreement with an AVF which specifies the terms and
 conditions for AVF services (of any kind) to be performed.

Declaration A formal statement from a customer assuring that conformity
of Conformance is realized or is attainable on the Ada implementation for
 which validation status is realized.

Foundation An Ada package used by multiple tests. Foundation units are
Unit designed to be reusable. A valid foundation unit must be in
(Foundation the Ada library for those tests that are dependent on the
Code) foundation unit.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to
Test be irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,
 input/output control, and data management.

Specialized One of annexes C through H of [Ada95]. Validation against
Needs Annex one or more specialized needs annexes is optional. For each
 annex, there is a test set that applies to it. In addition
 to all core language tests, the appropriate set of tests must
 be processed satisfactorily for an implementation to be
 validated for a specialized needs annex.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Unsupported A test for a language feature that is not required to be
Feature Test supported, because it is based upon a requirement stated in
 an Ada 95 Specialized Needs Annex.

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro97].

 1-4

 INTRODUCTION

Validation The process of checking the conformity of an Ada compiler
 to the Ada programming language and of issuing a certificate
 for this implementation.

Withdrawn Test A test found to be incorrect and not used in conformity
 testing. A test may be incorrect because it has an invalid
 test objective, fails to meet its test objective, or contains
 erroneous or illegal use of the Ada programming language.

 1-5

 CHAPTER 2

 IMPLEMENTATION DEPENDENCIES

2.1 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI95-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

 C45531M..P and C45532M..P (8 tests) check fixed-point operations for
 types that require a SYSTEM.MAX_MANTISSA of 47 or greater; for this
 implementation, MAX_MANTISSA is less than 47.

 C45624A..B (2 tests) check that the proper exception is raised if
 MACHINE_OVERFLOWS is FALSE for floating point types and the results of
 various floating-point operations lie outside the range of the base
 type; for this implementation, MACHINE_OVERFLOWS is TRUE.

 C96005B uses values of type DURATION's base type that are outside the
 range of type DURATION; for this implementation, the ranges are the
 same.

 EA3004G checks whether Pragma Inline is obeyed for a function called
 from within a package specification. This implementation does not obey
 Pragma Inline in this circumstance.

 CD1009C checks whether a length clause can specify a non-default size
 for a floating-point type; this implementation does not support such
 sizes.

 2-1

IMPLEMENTATION DEPENDENCIES

 The tests listed in the following table check that USE_ERROR is raised
 if the given file operations are not supported for the given combination
 of mode and access method; this implementation supports these
 operations.

 Test File Operation Mode File Access Method
 --
 CE2102D CREATE IN_FILE SEQUENTIAL_IO
 CE2102E CREATE OUT_FILE SEQUENTIAL_IO
 CE2102F CREATE INOUT_FILE DIRECT_IO
 CE2102I CREATE IN_FILE DIRECT_IO
 CE2102J CREATE OUT_FILE DIRECT_IO
 CE2102N OPEN IN_FILE SEQUENTIAL_IO
 CE2102O RESET IN_FILE SEQUENTIAL_IO
 CE2102P OPEN OUT_FILE SEQUENTIAL_IO
 CE2102Q RESET OUT_FILE SEQUENTIAL_IO
 CE2102R OPEN INOUT_FILE DIRECT_IO
 CE2102S RESET INOUT_FILE DIRECT_IO
 CE2102T OPEN IN_FILE DIRECT_IO
 CE2102U RESET IN_FILE DIRECT_IO
 CE2102V OPEN OUT_FILE DIRECT_IO
 CE2102W RESET OUT_FILE DIRECT_IO
 CE3102E CREATE IN_FILE TEXT_IO
 CE3102F RESET Any Mode TEXT_IO
 CE3102G DELETE -------- TEXT_IO
 CE3102I CREATE OUT_FILE TEXT_IO
 CE3102J OPEN IN_FILE TEXT_IO
 CE3102K OPEN OUT_FILE TEXT_IO.

 CE2203A checks that WRITE raises USE_ERROR if the capacity of an
 external sequential file is exceeded; this implementation cannot
 restrict file capacity.

 CE2403A checks that WRITE raises USE_ERROR if the capacity of an
 external direct file is exceeded; this implementation cannot restrict
 file capacity.

 CE3115A checks operations on text files when multiple internal files are
 associated with the same external file and one or more are open for
 writing; USE_ERROR is raised when this association is attempted.

 CE3304A checks that SET_LINE_LENGTH and SET_PAGE_LENGTH raise USE_ERROR
 if they specify an inappropriate value for the external file; there are
 no inappropriate values for this implementation.

 CE3413B checks that PAGE raises LAYOUT_ERROR when the value of the page
 number exceeds COUNT'LAST; for this implementation, the value of
 COUNT'LAST is greater than 150000, making the checking of this objective
 impractical.

 2-2

 IMPLEMENTATION DEPENDENCIES

 CXB4001..9 (9 tests) depend on the availability of an interface to
 COBOL; this implementation does not support Cobol interfaces. (See
 section 2.2 re CXB4001.)

 CXB5001..5 (5 tests) depend upon the availability of an interface to
 Fortran; this implementation does not support Fortran interfaces.

 CXC6001 checks for incorrect usages of atomic and volatile elementary
 types. This implementation does not support indivisible read/update for
 some types; the application of pragma atomic to a record type in line 65
 is rejected at compile time by this implementation.

2.2 MODIFICATIONS

In order to comply with the test objective it may be required to modify the
test source code, the test processing method, or the test evaluation method.
Modifications are allowable because at the time of test writing not all
possible execution environments of the test and the capabilities of the
compiler could be foreseen. Possible kinds of modification are:

 o Test Modification: The source code of the test is changed.
 Examples for test modifications are the insertion of a pragma, the
 insertion of a representation clause, or the splitting of a B-test into
 several individual tests, if the compiler does not detect all intended
 errors in the original test.

 o Processing Modification: The processing of the test by the Ada imple-
 mentation for validation is changed.
 Examples for processing modification are the change of the compilation
 order for a test that consists of multiple compilations or the
 additional compilation of a specific support unit in the library.

 o Evaluation Modification: The evaluation of a test result is changed.
 An example for evaluation modification is the grading of a test other
 than the output from REPORT.RESULT indicates. This may be required if
 the test makes assumptions about implementation features that are not
 supported by the implementation (e.g., the implementation of a file
 system on a bare target machine).

All modifications have been directed by the AVO after consulting the AVF and
the customer on the technical justification of the modification.

Modifications were required for 134 tests (BA21003 is listed twice).

 The following 86 tests were split into two or more tests because this
 implementation did not report the violations of the Ada Standard in the
 way expected by the original tests.

 B23002A B23004A B23004B B24001A B24001B
 B24001C B24005A B24005B B24007A B24009B
 B24104A B24204A B24204B B24204C B24204D

 2-3

IMPLEMENTATION DEPENDENCIES

 B24204E B24204F B24205A B24206A B24206B
 B25002A B25002B B26001A B26002A B26005A
 B29001A B2A003A B2A003B B2A003C B2A003D
 B2A003E B2A003F B2A005A B2A005B B2A007A
 B2A021A B32201A B33101A B33201B B35101A
 B36002A B36201A B37106A B38003C B38003D
 B38009D B393002 B41201A B44001A B44004A
 B44004B B44004C B45205A B48002A B48002D
 B51001A B55A01A B61005A B67001A B67001B
 B67001C B67001D B67001H B940002 B95001D
 B95003A B95004A B95007B B95063A BA1001D
 BA21003 BC1013A BC1109A BC1109B BC1109C
 BC1109D BC1201A BC1303F BC2001D BC2001E
 BC3005B BC3013A BC51016 BC51017 BC51018
 BD4011A

 B393006 and BC51C02, as directed by the AVO, were graded passed with the
 following code modification:

 for B393006, comment out lines 102 & 103;
 for BC51C02, comment out line 194

 These code modifications will remove unintended illegalities from the
 test programs, while retaining all intended illegalities (the check that
 is lost is that compilers don't wrongly treat Func as overriding in
 cases where it isn't--however, in these cases, it can't be legally
 declared for the particular checks).

 B610001, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 221, 223, 225, & 228

 These lines are ambiguous, by ARM 3.10.2(2) and 8.6(27).

 C761007, as directed by the AVO, was graded passed with the following
 code modification:

 replace line 376
 TCTouch.Validate("GHGHIJ", "Asynchronously aborted operation");
 with:
 TCTouch.Validate("GHIJ", "Asynchronously aborted operation");

 The original code will cause the check at line 376 to be failed because
 the procedures C761007_0.Finalize (@87ff) and C761007_1.Finalize
 (@133ff) both ensure that no duplicate characters are put into the check
 string. (The AVO requires this change so to retain this test for
 finalization, as several related test programs are withdrawn.)

 2-4

 IMPLEMENTATION DEPENDENCIES

 B83E01C, B83E01D, and B83E01E, as directed by the AVO, were processed
 with the following grading modification:

 the intended illegalities
 for B83E01C at lines 172 & 177 (which are marked with "ERROR")
 for B83E01D at lines 302 & 307 (which are marked with "ERROR")
 for B83E01C, file 3, at lines 56 & 61 (which are marked with "ERROR")
 may be regarded instead as ""optional error"s--i.e., they need not
 have corresponding diagnostic output from the compiler.

 Each of these cases is the declaration of a generic subprogram body.
 The only other modification that would address a compiler's failure to
 detect these lines as errors would be to split the test with the generic
 subprogram declarations removed; but this would simply duplicate the
 cases of the non-generic subprogram bodies, which is checked elsewhere
 in these test programs.

 C980001, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 251 & 274 (=> -- C980001_0.Hold_Up.Lock)

 This modification is necessary in order to prevent the test from hanging
 with a queued call to the protected object C980001_0.Hold_Up.

 C9A007A, as directed by the AVO, was graded passed with the following
 code modification:

 at lines 186 & 217, insert the following delay statements:
 delay ImpDef.Clear_Ready_Queue;

 CA2009C and CA2009F, as directed by the AVO, were graded passed with the
 following code modification:

 delete the control-Z characters from each of the test files

 BA21003, as directed by the AVO, was graded passed with the following
 processing modification:

 split the test file BA210030 at line 163, removing the subunit
 body of package Bad_Subunit from this otherwise error-free
 compilation; process the subunit as a separate compilation.

 The Ada 95 standard 10.1(4) allows an implementation "to impose
 implementation-defined restrictions on compilations that contain
 multiple compilation_units", such as requiring all such units to be
 error free.

 2-5

IMPLEMENTATION DEPENDENCIES

 BC3503A, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 100, 109, & 118 (these lines are LEGAL in Ada 95)

 Each of the package instantiations PS3, PR3, & PP3 is legal in Ada 95,
 as the requirement for matching in Ada 95 is for the formal and actual
 access TYPES' (not the actual SUBtype's) designated subtypes.

 BC3503C, as directed by the AVO, was graded passed with the following
 code modification:

 comment out line 63 (this line is LEGAL in Ada 95)

 The package instantiation PU3 is legal in Ada 95 (see BC3503A's entry).

 BC51C02, as directed by the AVO, was processed with the following code
 modification:

 comment out line 194

 This code modification will remove an unintended illegality from the
 test program, while retaining all intended illegalities (the check that
 is lost is that compilers don't wrongly treat Func as overriding in
 cases where it isn't--however, in this case, it can't be legally
 declared for the particular check).

 CDB0A02, as directed by the AVO, was graded passed with the following
 code modifications:

 at line 313, change the range's upper bound of 24 to '33'; at line
 320, change the range's upper bound of 30 to '35'.

 move the code at lines 100..102 of FDB0A00 to precede the code at
 lines 95..98 (i.e., exchange the order of these two sets of code &
 comments)

 The test currently checks for potential overflow based solely on the
 size of requested storage; but, because alignment adjustments in what
 storage is allocated might effectively increase the amount of storage
 "used" in the allocation, the check might fail to account for all used
 storage. The specified code modification moves the overflow check to
 follow the calculation for storage (which includes alignment
 considerations).

 CXA5012, as directed by the AVO, was graded passed with the following
 code modification:

 2-6

 IMPLEMENTATION DEPENDENCIES

 at line 86, change '100_000' to '10_000'

 This code modification is necessary for any implementation that defines
 type Integer to have a 16-bit range.

 CXA5015, as directed by the AVO, was graded passed with the following
 code modification:

 at line 252 change '4.1' to '4.0'

 At line 255, T'Adjacent (TC_Float,TC_float) /= TC_Float may be True
 because the function result is given at greater precision for non-model
 4.1 than the stored result.

 CXAF001, as directed by the AVO, was graded passed with the following
 code modification:

 at line 167: change 'Failed' to 'Comment'

 CXB3008, as directed by the AVO, was graded passed with the following
 code modifications:

 at line 106, insert ' type acc_ptr is access IC.char_array; ' at
 line 107, change function String_To_Double's parameter profile to:
 '(The_String : in IC.char_array ; End_Ptr: acc_ptr := null)'

 at line 125, change 'atof' to 'strtod'

 This code modification alters the previously specified one by giving the
 Ada function corresponding to strtod a second parameter which, we hope,
 will make it independent of lunar orientation.

 CXB3009, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 264..287

 This change simply removes the entire test block beginning at line 264,
 which checks that Storage_Error is raised as per the standard B.3.1(28).
 There are many reasons why the expected Storage_Error might not be
 raised --too much available storage, too little time, even storage
 reclamation!

 CXB3010, as directed by the AVO, was graded passed with the following
 code modification:

 replicate line 199 at line 256, to update the pointer object's value:

 2-7

IMPLEMENTATION DEPENDENCIES

 TC_chars_ptr := ICS.New_Char_Array(TC_char_array_2);

 The change is necessary to ensure that TC_chars_ptr has a valid pointer
 value; the original code references TC_chars_ptr after Free was applied
 to it, and so by B.3.1(51,53) that execution may be erroneous.

 CXB4001, as directed by the AVO, was processed with the following
 modification and graded inapplicable (see section 2.1):

 at line 198: change 'To_Comp' to 'To_Binary'

 The function To_Comp was defined in draft versions of the Ada 95
 standard but was changed to To_Binary for the final (B.4:45).

 CXB4007, as directed by the AVO, was processed with the following
 modification and graded inapplicable (see section 2.1):

 comment out lines 263..268

 The Byte_Array values returned by two calls of To_Binary should not be
 expected to be equal, contrary to this particular check.

 CXB5004, as directed by the AVO, was processed with the following
 modification and graded inapplicable (see section 2.1):

 at line f0-79, change 'INVARR(3)' to 'INVARR' [nb: not line 81]

 at line f0-83, change 'STR' to 'STR *7'

 The changes specified above are necessary in order to produce a legal
 Fortran program to be used for the test program's interfacing checks.

 BXC6001, as directed by the AVO, was graded passed with the following
 code modification:

 comment out pragma Atomic at lines 98, 106, & 116

 BXC6A01, BXC6A02, and BXC6A04, as directed by the AVO, were graded
 passed with the following code modification to the foundation file
 FXC6A00:

 comment out lines 103 & 113

 The application of a pragma Volatile to derived types Volatile_Composite
 and Volatile_Array violates 13.1(10), for these types are untagged
 derived types (with tagged components) whose parent types are
 by-reference types (by 6.2:5,8). The only test that references these
 two types is BXC6A03, and this test is withdrawn (for a similar reason).

 2-8

 IMPLEMENTATION DEPENDENCIES

 CXD1008, as directed by the AVO, was graded passed with the following
 code modification:

 comment out the check @228..232

 This check may fail if an implementation uses different representations
 (lengths) of the compared values--one possibly the register contents of
 evaluation, the other a stored copy--, as the value is not a model
 number.

 CXD2001..4 (4 tests) and CXD2006-8 (3 tests) were graded unsupported
 without modification. These tests check implementation behavior under
 the [Ada95] task dispatching policy FIFO_Within_Priorities. This
 implementation rejects the pragma Task_Dispatching_Policy that specifies
 the policy, at compile time.

 CXD6001, as directed by the AVO, was graded passed with the following
 code modifications:

 at line 114 insert 'with ImpDef;'
 at lines 270, 285, & 300 append ' Delay ImpDef.Clear_Ready_Queue;'

 This delay statement will enable the Victim_Type tasks to complete
 before Check_Results is called.

 CXD6002, as directed by the AVO, was graded passed with the following
 code modification (for this non-uni-processor implementation):

 insert immediately after line 348: CXD6002_1.Done;
 (i.e., replicate line 357 here)

 On a non-uni-processor system, this code is necessary to terminate the
 task CXD6002_1.Weapon (line 110).

 CXG1004, as directed by the AVO, was graded passed with the following
 code modification:

 at lines 294,307,320,333 replace characters '_i' with '_One'

 The required change makes these assignments use the intended variable.
 The test was coded with a simple typographical error in what are checks
 of a clearly defined requirement--that Constraint_Error be raised for
 the complex elementary functions Arctanh & Arccoth with a parameter of
 plus of minus one. Implementers of the Numerics Annex should understand
 these requirements regardless of the coding of this ACVC test program.

 2-9

IMPLEMENTATION DEPENDENCIES

 CXG2002, as directed by the AVO, was graded passed with the following
 code modification:

 at lines 99 & 279 change the expression
 'Mre * abs Expected * Real'Model_Epsilon'
 to: 'Mre *(abs Expected * Real'Model_Epsilon)'

 This change will ensure that the expression is not evaluated by
 multiplying its two large terms together and overflowing.

 CXG2004, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 455, 456, & 457 (calls to Sin_Check & Cos_Check)

 By removing the calls to the flawed routines, the test program's two
 other, valid, routines can still be used.

 CXG2011, as directed by the AVO, was graded passed with the following
 code modification:

 at line 394: change 'Failed' to 'Comment'

 This change allows the non-conforming raising of Argument_Error, and so
 does not penalize implementers for meeting the test's original
 requirement. However, implementations should raise Constraint_Error in
 this case, as per A.5.1(28,29), which will be required under ACVC 2.2
 validation.

 CXG2012 and CXG2020, as directed by the AVO, were graded passed with the
 following code modifications:

 at lines 99, 124, & 119, respectively of CXG2012 & CXG2020,
 change the expression
 'Mre * abs Expected * Real'Model_Epsilon'
 to: 'Mre *(abs Expected * Real'Model_Epsilon)'

 This change will ensure that the expression is not evaluated by
 multiplying its two large terms together and overflowing.

 CXG2013, as directed by the AVO, was graded passed with the following
 code modification:

 comment out line 434 (the call to Special_Angle_Test)

 By removing the call to the flawed routine, the test program's other,
 valid, checks can be made. (The Special_Angle_Test is argued to be too
 lenient, re Tan with cycle=360.0 degrees, and too severe, re cycle in

 2-10

 IMPLEMENTATION DEPENDENCIES

 radians.)

 at line 89: change '1000' to '1001'

 The change should preclude an even factor of 0.5 in the expression at
 line 295, and hence the even results of Pi for X and Pi/2 for Y --which
 is sufficiently near a pole of the Tan function and may overflow
 (A.5.1:34).

 CXG2014, as directed by the AVO, was graded passed with the following
 code modification:

 comment out line 345 (the call to Subtraction_Error_Test)

 By effectively deleting this one line, the flawed subprogram will be
 removed from execution, and the other, valid checks can be made.

 CXG2016, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 417 & 418

 These lines contain the only calls to the incorrect procedure
 Indentity_1_Test. The "conversion to degrees" at line 280 is not
 sensible, and will wrongly cause the test to be failed.

 CXG2017, as directed by the AVO, was graded passed with the following
 code modifications:

 change line 212, by inserting parens, from
 X := (B - A) * Real (I) / Real (Max_Samples) + A;
 to
 X := (B - A) *(Real (I) / Real (Max_Samples))+ A;

 comment out line 256 (the first call to Identity_Test)

 The first code modification removes the potential for overflow, forcing
 one of the allowed orders of evaluation for the original code. The
 second change removes the invocation of Identity_Test that checks Tanh
 values that are too close to zero for the test's error bounds.

2.3 UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED NEEDS ANNEXES

As allowed by [Ada95], an implementation need not support any of the
capabilities specified by a Specialized Needs Annex, or it may support some
or all of them. For validation testing, each set of tests for a particular
Annex is processed only upon customer request, but is processed in full (even
if the Ada implementation provides only partial support). When such a test
cannot be passed, because the implementation provides only partial support,

 2-11

IMPLEMENTATION DEPENDENCIES

the result is graded "unsupported" (rather than "inapplicable").

The set of tests for each of the following Specialized Needs Annexes was not
processed during this validation testing:

 Annex E, Distributed Systems (all BXE* & CXE* files)
 Annex F, Information Systems (all BXF* & CXF* files)
 Annex H, Safety and Security (all BXH*, CXH*, & LXH* files)

The following tests for Annex C, Systems Programming, were graded
"unsupported": none.

The following tests for Annex D, Real-Time Systems, were graded
"unsupported": CXD2001..4 CXD2006..8

The following tests for Annex G, Numerics, were graded "unsupported": none.

 2-12

 CHAPTER 3

 PROCESSING INFORMATION

3.1 VALIDATION PROCESS

A partial prevalidation was conducted at the AVF's site.

Validation testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

A floppy diskette containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
floppy diskette were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer and executed on the
target computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix A for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

-compile X1 X2 X3 ...

 This switch is included on the command line. This enables the
following actions which would not otherwise occur:

 1. Compilation units in each listed file are parsed in order, and if
there are duplicate units within the file Xn, the later ones
overwrite the earlier ones.

 2. If there are syntax errors, a listing file is produced. Syntax
 corrections that would normally be just applied to the file are

instead converted to error messages in the listing file.

 3. The compilation units of the file are installed, in an order

 3-1

PROCESSING INFORMATION

chosen by the compiler. If there are semantic errors, a list file
is produced. The order of the files in the list file will be in
compilation order, not the order in which they appear in the
original file.

 4. If each of the comp units installed successfully, the compiler
 searches the view for .ada files that have been obsolesced by the

newly compiled files. Any xxx.ada files that are obsolesced are
renamed xxx.ada.obs.

Test output, compiler and linker listings, and job logs were captured on
diskettes and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.2 MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

This section contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG97]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN_LEN, also listed here. These values are expressed in a
symbolic notation, using placeholders as appropriate.

3.2.1 Macro Parameters

Macro Parameter Macro Value
--

$MAX_IN_LEN 254

$BIG_ID1 AAA ... A1 (254 characters)

$BIG_ID2 AAA ... A2 (254 characters)

$BIG_ID3 AAA ... A3A ... A (254 characters)

$BIG_ID4 AAA ... A4A ... A (254 characters)

$BIG_STRING1 "AAA ... A" (254/2 characters)

$BIG_STRING2 "AAA ... A1" ((254/2)-1 characters)

$BLANKS " ... " (254-20 blanks)

$MAX_STRING_LITERAL "AAA ... A" (254 characters)

--

$ACC_SIZE 32

$ALIGNMENT 1

 3-2

 PROCESSING INFORMATION

$COUNT_LAST 1_000_000_000

$ENTRY_ADDRESS SYSTEM.STORAGE_ELEMENTS.TO_ADDRESS(30)

$ENTRY_ADDRESS1 SYSTEM.STORAGE_ELEMENTS.TO_ADDRESS(31)

$ENTRY_ADDRESS2 SYSTEM.STORAGE_ELEMENTS.TO_ADDRESS(2)

$FIELD_LAST 2_147_483_647

$FORM_STRING ""

$FORM_STRING2 "CANNOT_RESTRICT_FILE_CAPACITY"

$GREATER_THAN_DURATION 1.0

$ILLEGAL_EXTERNAL_FILE_NAME1 BAD/_CHARACTERS

$ILLEGAL_EXTERNAL_FILE_NAME2 CONTAINS/_WILDCARDS

$INAPPROPRIATE_LINE_LENGTH -1

$INAPPROPRIATE_PAGE_LENGTH -1

$INTEGER_FIRST -2147483648

$INTEGER_LAST 2147483647

$LESS_THAN_DURATION -1.0

$MACHINE_CODE_STATEMENT CODE_0'(OP => NOP);

$MAX_INT 2147483647

$MIN_INT -2147483648

$NAME SHORT_SHORT_INTEGER

$NAME_SPECIFICATION1 X2120A

$NAME_SPECIFICATION2 X2120B

$NAME_SPECIFICATION3 X3119A

$OPTIONAL_DISC (OP : OPCODE)

$RECORD_DEFINITION RECORD OPRND_1 : OPERAND; END RECORD;

$RECORD_NAME CODE_0

$TASK_SIZE 32

$TASK_STORAGE_SIZE 8192

 3-3

PROCESSING INFORMATION

$VARIABLE_ADDRESS FCNDECL.ADDRESS0

$VARIABLE_ADDRESS1 FCNDECL.ADDRESS1

$VARIABLE_ADDRESS2 FCNDECL.ADDRESS2

 3-4

 PROCESSING INFORMATION

Package ImpDef and Its Children

The package ImpDef is used by several tests of core language features.
Before use in ACVC testing, this package is modified to specify certain
implementation-defined features. In addition, package ImpDef has a child
package for each Specialized Needs Annex, each of which may need similar
modifications. The child packages are independent of one another, and are
used only by tests for their respective annexes.

This section presents the package ImpDef and each of the relevant child
packages as they were modified for this validation. In the interests of
simplifying this VSR, the header comment block was removed from each of the
package files.

3.2.1.1 Package ImpDef
-- IMPDEF.A
--
with Report;
with Ada.Text_Io;
with System.Storage_Elements;

package Impdef is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following boolean constants indicate whether this validation will
 -- include any of annexes C-H. The values of these booleans affect the
 -- behavior of the test result reporting software.
 --
 -- True means the associated annex IS included in the validation.
 -- False means the associated annex is NOT included.

 Validating_Annex_C : constant Boolean := True;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_D : constant Boolean := True;
 -- ^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_E : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_F : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_G : constant Boolean := True;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_H : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-5

PROCESSING INFORMATION

 -- This is the minimum time required to allow another task to get
 -- control. It is expected that the task is on the Ready queue.
 -- A duration of 0.0 would normally be sufficient but some number
 -- greater than that is expected.

 Minimum_Task_Switch : constant Duration := 0.1;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the time required to activate another task and allow it
 -- to run to its first accept statement. We are considering a simple task
 -- with very few Ada statements before the accept. An implementation is
 -- free to specify a delay of several seconds, or even minutes if need be.
 -- The main effect of specifying a longer delay than necessary will be an
 -- extension of the time needed to run the associated tests.

 Switch_To_New_Task : constant Duration := 1.0;
 -- ^^^ -- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the time which will clear the queues of other tasks
 -- waiting to run. It is expected that this will be about five
 -- times greater than Switch_To_New_Task.

 Clear_Ready_Queue : constant Duration := 5.0;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Some implementations will boot with the time set to 1901/1/1/0.0
 -- When a delay of Delay_For_Time_Past is given, the implementation
 -- guarantees that a subsequent call to Ada.Calendar.Time_Of(1901,1,1)
 -- will yield a time that has already passed (for example, when used in
 -- a delay_until statement).

 Delay_For_Time_Past : constant Duration := 0.1;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Minimum time interval between calls to the time dependent Reset
 -- procedures in Float_Random and Discrete_Random packages that is
 -- guaranteed to initiate different sequences. See RM A.5.2(45).

 Time_Dependent_Reset : constant Duration := 0.3;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Test CXA5013 will loop, trying to generate the required sequence
 -- of random numbers. If the RNG is faulty, the required sequence
 -- will never be generated. Delay_Per_Random_Test is a time-out value

 3-6

 PROCESSING INFORMATION

 -- which allows the test to run for a period of time after which the
 -- test is failed if the required sequence has not been produced.
 -- This value should be the time allowed for the test to run before it
 -- times out. It should be long enough to allow multiple (independent)
 -- runs of the testing code, each generating up to 1000 random
 -- numbers.

 Delay_Per_Random_Test : constant Duration := 1.0;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The time required to execute this procedure must be greater than the
 -- time slice unit on implementations which use time slicing. For
 -- implementations which do not use time slicing the body can be null.

 procedure Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This constant must not depict a random number generator state value.
 -- Using this string in a call to function Value from either the
 -- Discrete_Random or Float_Random packages will result in
 -- Constraint_Error (expected result in test CXA5012).

 Non_State_String : constant String := "By No Means A State";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This string constant must be a legal external tag value as used by
 -- CD10001 for the type Some_Tagged_Type in the representation
 -- specification for the value of 'External_Tag.

 External_Tag_Value : constant String := "implementation_defined";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following address constant must be a valid address to locate
 -- the C program CD30005_1. It is shown here as a named number;
 -- the implementation may choose to type the constant as appropriate.
 procedure Cd30005_C_Support;
 pragma Import (C, Cd30005_C_Support, External_Name => "_cd30005_1");
 pragma Link_With ("cd300051.o");

 Cd30005_1_Foreign_Address : constant System.Address :=
 Cd30005_C_Support'Address;

 -- System.Storage_Elements.To_Address (16#0000_0000#);
 -- MODIFY HERE AS REQUIRED --- ^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-7

PROCESSING INFORMATION

 -- The following string constant must be the external name resulting
 -- from the C compilation of CD30005_1. The string will be used as an
 -- argument to pragma Import.

 Cd30005_1_External_Name : constant String := "CD30005_1";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following constants should represent the largest default alignment
 -- value and the largest alignment value supported by the linker.
 -- See RM 13.3(35).

 Max_Default_Alignment : constant := 8;
 -- ^ --- MODIFY HERE AS NEEDED

 Max_Linker_Alignment : constant := 8;
 -- ^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the C compilation of CXB30130.C and CXB30131.C. The strings
 -- will be used as arguments to pragma Import.

 Cxb30130_External_Name : constant String := "CXB30130";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 Cxb30131_External_Name : constant String := "CXB30131";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the COBOL compilation of CXB40090.CBL, CXB40091.CBL, and
 -- CXB40092.CBL. The strings will be used as arguments to pragma Import.

 Cxb40090_External_Name : constant String := "CXB40090";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 Cxb40091_External_Name : constant String := "CXB40091";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 Cxb40092_External_Name : constant String := "CXB40092";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the Fortran compilation of CXB50040.FTN, CXB50041.FTN,
 -- CXB50050.FTN, and CXB50051.FTN.
 --
 -- The strings will be used as arguments to pragma Import.
 --

 3-8

 PROCESSING INFORMATION

 -- Note that the use of these four string constants will be split between
 -- two tests, CXB5004 and CXB5005.

 Cxb50040_External_Name : constant String := "CXB50040";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 Cxb50041_External_Name : constant String := "CXB50041";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 Cxb50050_External_Name : constant String := "CXB50050";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 Cxb50051_External_Name : constant String := "CXB50051";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following constants have been defined for use with the
 -- representation clause in FXACA00 of type Sales_Record_Type.
 --
 -- Char_Bits should be an integer at least as large as the number
 -- of bits needed to hold a character in an array.
 -- A value of 6 * Char_Bits will be used in a representation clause
 -- to reserve space for a six character string.
 --
 -- Next_Storage_Slot should indicate the next storage unit in the record
 -- representation clause that does not overlap the storage designated for
 -- the six character string.

 Char_Bits : constant := 8;
 -- MODIFY HERE AS NEEDED ---^

 Next_Storage_Slot : constant := 6;
 -- MODIFY HERE AS NEEDED ---^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constant must be the path name for the .AW
 -- files that will be processed by the Wide Character processor to
 -- create the C250001 and C250002 tests. The Wide Character processor
 -- will expect to find the files to process at this location.

 Test_Path_Root : constant String :=
 "/data/ftp/public/AdaIC/testing/acvc/95acvc/";
 -- ^^^ --- MODIFY HERE AS NEEDED

 -- The following two strings must not be modified unless the .AW file
 -- names have been changed. The Wide Character processor will use
 -- these strings to find the .AW files used in creating the C250001
 -- and C250002 tests.

 Wide_Character_Test : constant String := Test_Path_Root & "c250001";
 Upper_Latin_Test : constant String := Test_Path_Root & "c250002";

 3-9

PROCESSING INFORMATION

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following instance of Integer_IO or Modular_IO must be supplied
 -- in order for test CD72A02 to compile correctly.
 -- Depending on the choice of base type used for the type
 -- System.Storage_Elements.Integer_Address; one of the two instances will
 -- be correct. Comment out the incorrect instance.

 --M package Address_Value_IO is
 --M new
Ada.Text_IO.Integer_IO(System.Storage_Elements.Integer_Address);

 package Address_Value_Io is
 new Ada.Text_Io.Modular_Io (System.Storage_Elements.Integer_Address);

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end Impdef;

--==--

package body Impdef is

 -- NOTE: These are example bodies. It is expected that implementors

 -- will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The time required to execute this procedure must be greater than the

 -- time slice unit on implementations which use time slicing. For

 3-10

 PROCESSING INFORMATION

 -- implementations which do not use time slicing the body can be null.

 procedure Exceed_Time_Slice is

 T : Integer := 0;

 Loop_Max : constant Integer := 4_000;

 begin

 for I in 1 .. Loop_Max loop

 T := Report.Ident_Int (1) * Report.Ident_Int (2);

 end loop;

 end Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end Impdef;

3.2.1.2 Package ImpDef.Annex_C
-- IMPDEFC.A
--
with Ada.Interrupts.Names;

package Impdef.Annex_C is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Interrupt_To_Generate should identify a non-reserved interrupt

 3-11

PROCESSING INFORMATION

 -- that can be predictably generated within a reasonable time interval
 -- (as specified by the constant Wait_For_Interrupt) during testing.

 Interrupt_To_Generate : constant Ada.Interrupts.Interrupt_Id :=
 Ada.Interrupts.Names.Sigbreak;
 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Wait_For_Interrupt should specify the reasonable time interval during
 -- which the interrupt identified by Interrupt_To_Generate can be
 -- expected to be generated.

 Wait_For_Interrupt : constant := 0.0;
 -- ^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Enable_Interrupts should enable interrupts, if this
 -- is required by the implementation. [See additional notes on this
 -- procedure in the package body.]

 procedure Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Generate_Interrupt should generate the interrupt
 -- identified by Interrupt_To_Generate within the time interval
 -- specified by Wait_For_Interrupt. [See additional notes on this
 -- procedure in the package body.]

 procedure Generate_Interrupt;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end Impdef.Annex_C;

--==--

with Text_Io;
package body Impdef.Annex_C is

 -- NOTE: These are example bodies. It is expected that implementors
 -- will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Enable_Interrupts should enable interrupts, if this
 -- is required by the implementation.
 --
 -- The default body is null, since it is expected that most
implementations
 -- will not need to perform this step.

 3-12

 PROCESSING INFORMATION

 --
 -- Note that Enable_Interrupts will be called only once per test.

 procedure Enable_Interrupts is
 begin
 Text_Io.Put_Line ("*** Enable_Interrupts: Interrupts not supported");

 -- ^^^^^^^^^^^^^^^^^^^^ MODIFY THIS BODY AS NEEDED
^^^^^^^^^^^^^^^^^^^^

 end Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Generate_Interrupt should generate the interrupt
 -- identified by Interrupt_To_Generate within the time interval
 -- specified by Wait_For_Interrupt.
 --
 -- The default body assumes that an interrupt will be generated by some
 -- physical act during testing. While this approach is acceptable, the
 -- interrupt should ideally be generated by appropriate code in the
 -- procedure body.
 --
 -- Note that Generate_Interrupt may be called multiple times by a single
 -- test. The code used to implement this procedure should account for this
 -- possibility.

 procedure Generate_Interrupt is

 begin
 Text_Io.Put_Line ("*** Generate_Interrupt: Interrupts not supported");
 end Generate_Interrupt;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end Impdef.Annex_C;

3.2.1.3 Package ImpDef.Annex_D
-- This is an Apex-specific function to determine if one of the multiprocessor
-- (i.e. threaded) systems is being tested. It returns an integer
-- instead of a Imdef.Annex_D.Processor_Type value to avoid
-- being dependent on the spec of Imdef.Annex_D, whose elaboration has to
-- call it.
-- ??? This currently makes no attempt to figure out if the system is
-- time sliced. Time slicing is disabled by the FIFO_Within_Priorities
-- Task_Dispatching policy, which should be in any test that cares about this.

with System;
function Get_Processor_Type return Integer is
 type Processor_Type is (Uni_Processor, Time_Slice, Multi_Processor);
 for Processor_Type use
 (Uni_Processor => 0, Time_Slice => 1, Multi_Processor => 2);
begin
 if System.Name'Image (System.System_Name) = "SPARC_SOLARIS_THREAD" or else

 3-13

PROCESSING INFORMATION

 System.Name'Image (System.System_Name) = "ALPHA_OSF1_THREAD" or else
 System.Name'Image (System.System_Name) = "MIPS_IRIX5_THREAD" then
 return Processor_Type'Pos (Multi_Processor);
 else
 return Processor_Type'Pos (Uni_Processor);
 end if;
end Get_Processor_Type;

-- IMPDEFD.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687
and
-- F08630-91-C-0015, the U.S. Government obtained unlimited rights in the
-- software and documentation contained herein. Unlimited rights are
-- defined in DFAR 252.227-7013(a)(19). By making this public release,
-- the Government intends to confer upon all recipients unlimited rights
-- equal to those held by the Government. These rights include rights to
-- use, duplicate, release or disclose the released technical data and
-- computer software in whole or in part, in any manner and for any
purpose
-- whatsoever, and to have or permit others to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- DESCRIPTION:
-- This package provides tailorable entities for a particular
-- implementation. Each entity may be modified to suit the needs
-- of the implementation. Default values are provided to act as
-- a guide.
--
-- The entities in this package are those which are used exclusively
-- in tests for Annex D (Real-Time Systems).
--
-- APPLICABILITY CRITERIA:
-- This package is only required for implementations validating the
-- Real-Time Systems Annex.
--
-- CHANGE HISTORY:
-- 29 Jan 96 SAIC Initial version for ACVC 2.1.
--
--!

with Get_Processor_Type;
package ImpDef.Annex_D is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-14

 PROCESSING INFORMATION

 -- This constant is the maximum storage size that can be specified
 -- for a task. A single task that has this size must be able to
 -- run. Ideally, this value is large enough that two tasks of this
 -- size cannot run at the same time. If the value is too small then
 -- test CXDC001 may take longer to run. See the test for further
 -- information.

 Maximum_Task_Storage_Size : constant := 16_000_000;
 -- ^^^^^^^^^^ --- MODIFY HERE

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Indicates the type of processor on which the tests are running.
 -- Time_Slice indicates a uniprocessor with an operating system that
 -- simulates a multi-processor by using time slicing.

 type Processor_Type is (Uni_Processor, Time_Slice, Multi_Processor);

 for Processor_Type use
 (Uni_Processor => 0, Time_Slice => 1, Multi_Processor => 2);

 Processor : constant Processor_Type := Processor_Type'Val
(Get_Processor_Type);
 -- ^^^^^^^^^^^ --- MODIFY HERE

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_D;

3.2.1.4 Package ImpDef.Annex_G
-- IMPDEFG.A
--
package ImpDef.Annex_G is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This function must return a "negative zero" value for implementations
 -- for which Float'Signed_Zeros is True.

 function Negative_Zero return Float;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_G;

 --==--

package body ImpDef.Annex_G is

 -- NOTE: These are example bodies. It is expected that implementors
 -- will write their own versions of these routines.

 3-15

PROCESSING INFORMATION

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This function must return a negative zero value for implementations
 -- for which Float'Signed_Zeros is True.
 --
 -- The default body simply returns a negated literal 0.0. If the
 -- default body does not return the value corresponding to a negatively
 -- signed zero for the implementation under test, it must be replaced
 -- by one which does. See RM A.5.3(13).

 function Negative_Zero return Float is
 begin
 return -0.0; -- Note: If this value is not negative zero for the
 -- implementation, use of this "default" value
 -- could result in false failures in
 -- implementations where Float'Signed_Zeros
 -- is True.

 -- ^^^^^^^^^^^^^^^^^^^^ MODIFY THIS BODY AS NEEDED ^^^^^^^^^^^^^^^^^^^^

 end Negative_Zero;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_G;

 3-16

 PROCESSING INFORMATION

3.3 WITHDRAWN TESTS

At the time of this validation testing, the following 24 tests were withdrawn
from the ACVC 2.1 test suite.

 B37312B BXC6A03 C390010 C392010 C392012 C42006A
 C48009A C760007 C760012 C761006 C761008 C761009
 C9A005A C9A008A CD20001 CXC3004 CXD2005 CXD4009
 CXD5002 CXDB005 CXDC001 CXG2022 E28002B LA1001F

 3-17

 APPENDIX A

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

A.1 Compilation System Options

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report.

-compile X1 X2, X3 ...
 Processes the files X1 X2 X3... in order. For each file Xn, the
 following operations are performed:

 The file Xn can contain several compilation units. Those units are
 parsed in order, and if there are duplicate units within the file Xn,
 the later ones overwrite the earlier ones.

 If there are syntax errors, a listing file is produced. Syntax
 corrections that would normally be just applied to the file are
 instead converted to error messages in the listing file.

 Next, the compilation units of the file are installed, in an order
 chosen by the compiler. If there are semantic errors, a list file is
 produced. The order of the files in the list file will be in
 compilation order, not the order in which they appear in Xn.

 Finally, if each of the comp units installed successfully, the
 compiler searches the view for .ada files that have been obsolesced
 by the newly compiled files. Any xxx.ada files that are obsolesced
 are renamed xxx.ada.obs.

 By default, these actions are not enabled. Placing the -compile
 switch on the command line enables these actions.

CLEAN_GOAL
 The state to which the units will be cleaned. All compilation
 artifacts associated with higher states are deleted.
 Default: Archived

CLOSURE
 Used to determine additional units to be analyzed.

 A-1

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

 Default: installed

COMPILER_KEY
 The compiler to use, which provides for platform-specific semantic
 checking and code generation.
 Default: $APEX_BASE/ada/keys/$APEX_ARCH.2.4.0

FIRST_ERROR
 Continue past the first unit with errors. If True, command will stop
 after the first unit containing an error. Default: False

FLAG_INEVITABLE_EXCEPTIONS
 Control the handling of any statically determinable situation that
 is certain to raise an exception when executed, such as an
 out-of-bounds assignment. Default: False

IGNORE_INVALID_REP_SPECS
 Control the handling of invalid or unsupported representation
 specifications. Representation specifications are considered
 invalid if they do not conform to the restrictions specified in
 "LRM Annex M: Implementation-Dependent Characteristics."
 Default: False

IGNORE_REP_SPECS
 Ignore representation specifications during semantic analysis.
 Default: False

IGNORE_UNSUPPORTED_REP_SPECS
 Control the handling of unsupported representation specifications.
 This switch is overridden by the IGNORE_INVALID_REP_SPECS switch.
 When IGNORE_INVALID_REP_SPECS is True, this switch has no effect. If
 IGNORE_INVALID_REP_SPECS is False and this switch is True,
 unsupported representation specifications are reported with warning
 messages in the output window and are otherwise ignored. If this
 switch is False, unsupported representation specifications are
 treated as errors, causing analysis of the units that contain them
 to fail. Default: False

INTO
 The directory into which the files will be parsed. Must name a view or
 a directory in a view. If blank, the current directory is used.
 Default: " " (current directory)

NEW_RELEASE
 Recompiles the units in each view, converting to new DIANA,
 CG attribute, and program library formats Default: False

OPTIMIZATION_LEVEL
 The optimization level to use for compiling. 0 is fastest compilation,
 2 is best code. This switch also controls how much inlining is done:
 at level 0, no routines are inlined; at level 1, only those routines
 with an applied pragma Inline are candidates for inlining; at level 2,
 all routines declared within the current same compilation unit as the
 call site are candidates for inlining, in addition to those made

 A-2

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

 available at level 1 with a pragma Inline. Default: 0

OPTIMIZATION_OBJECTIVE
 The optimization objective, either Time or Space, to be used for any
 compilation unit that does not contain a pragma Optimize. Execution
 speed (Time) or code size (Space) are never completely ignored, but
 if this switch is set to Time, the compiler places greater emphasis
 on optimizing for speed, while the size of the code is of secondary
 importance. If it is set to Space, optimizations for speed that
 increase size are not done. If this switch is set to Space, the loop
 unrolling optimization (usually performed at level 2) is not
 performed, Default: Time

PROFILING
 The type of profiling to use when preparing the code. Set this switch
 to "" to turn off profiling. For native compilers, both Gprof and Prof
 are valid settings. For embedded compilers, only Prof is recognized.
 Default: ""

REJECT_BAD_LRM_PRAGMAS
 Control the handling of illegal Ada pragmas. When True, illegal Ada
 pragmas are treated as errors, thus causing analysis of the units that
 contain them to fail. When False, illegal Ada pragmas are reported
 with warning messages in the output window and are otherwise ignored.
 Default: False

REJECT_BAD_RATIONAL_PRAGMAS
 Control the handling of illegal Rational-defined pragmas. When True,
 illegal Rational pragmas are treated as errors, thus causing analysis
 of the units that contain them to fail. When False, illegal Rational
 pragmas are reported with warning messages in the output window and
 are otherwise ignored. Default: False

REJECT_INEVITABLE_EXCEPTIONS
 Control the handling of any statically determinable situation that is
 certain to raise an exception when executed, such as an out-of-bounds
 assignment. When True, this switch overrides the
 FLAG_INEVITABLE_EXCEPTIONS switch and inevitable exceptions are
 treated as errors, thus causing analysis of the units that contain
 them to fail. When False, the treatment of inevitable exceptions
 depends on the setting of the FLAG_INEVITABLE_EXCEPTIONS switch.
 Default: False

REJECT_PROMPTS
 The compiler will allow you to code units that contain •[statement]
 prompts. Default: False

REJECT_SYNTAX_ERRORS
 The editor and compiler should make syntactic corrections to the
 programs. When the value is False, corrections are made. When True,
 corrections are not made; you must make them. Default: False

REJECT_UNDEFINED_PRAGMAS
 Control the handling of any pragmas not defined in the LRM or in the

 A-3

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

 Compiler Reference. When True, undefined pragmas are treated as
 errors, thus causing analysis of the units that contain them to fail.
 When False, undefined pragmas are reported with warning messages in
 the output window and are otherwise ignored. Default: False

TARGET_DIRECTORY
 Target directory for cross compiling. Default: " "

TARGET_MACHINE
 Host name of the target machine for cross compiling. Default: " "

TRACING
 The type of tracing to perform. The value can be a combination of
 types, e.g. Runtime+Call_Return. Default: RUNTIME

 A-4

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

A.2 Linker Options

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to linker documentation and not to this
report.

ALL LINKER SWITCHES

ADA_LINK_MODE
 Specifies the link mode for Ada main programs in the view. Valid
 for targets that support shared libraries. Default: default

COMPILER_KEY
 The compiler to use, which provides for platform-specific semantic
 checking and code generation.
 Default: $APEX_BASE/ada/keys/$APEX_ARCH.2.4.0

CONFIGURATION
 Configuration to use during a link to compute the closure of a main
 program. If blank, the imports are used. Can be used to specify units
 to compile beyond those found in the code closure in the Compiler
 Switches imported views. Default: " "

ELABORATION_ORDER_LISTING
 Create a file containing a listing of the elaboration order of the
 units in its closure is created when a main program is linked.
 Elaboration-order listings can be created only for main programs.
 Default: False

INCREMENTAL_LINK
 Attempt to use incremental features of the platform linker.
 Default: False

LINK_CONTRIBUTION_DEFAULT_MODE
 The LINK_CONTRIBUTION_DEFAULT_MODE switch provides view selective
 control over linking with/without shared libraries. This switch is
 only valid when the ADA_LINK_MODE switch in the Ada main program's
 view is "dynamic_or_static". A LINK_CONTRIBUTION_DEFAULT_MODE of
 "static" indicates that only object files are to be used from that
 view in a link process. Any shared library is to be ignored. If
 the LINK_CONTRIBUTION_DEFAULT_MODE is "dynamic", only the shared
 library in the view is to be used for a link. It is an error at
 link-time if the view cannot provide a shared library (that is,
 the view was compiled with CREATED_SHARED_LIBRARY set to FALSE).
 A LINK_CONTRIBUTION_DEFAULT_MODE of "dynamic_or_static" specifies
 that the shared library is to be used if the view is a shared
 library view (CREATE_SHARED_LIBRARY = TRUE) and the object files
 are to be used otherwise. If the LINK_CONTRIBUTION_DEFAULT_MODE
 switch does not have a value in a view, the value defaults to
 "dynamic_or_static".
 Default: dynamic_or_static

 A-5

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

NON_ADA_LINKAGE
 The arguments to pass to the target linker. This can be used to
 specify object files and archive libraries for non-Ada program
 units that will be included when an Ada main program is linked.
 Default: " "

NONBLOCKING_IO
 When a task issues an I/O request, do not wait for the I/O to
 complete. When True, the task is blocked until the I/O completes,
 but other tasks in the program may run. When False, the entire
 program (all tasks) are blocked while any task is waiting for an
 I/O request to complete.
 Default: False

POSIX_COMPLIANT
 Use the POSIX I/O behavior. When False,uses traditional I/O
 behavior allowing users to use some of the UNIX signals that POSIX
 forbids. Default: True

RUNTIMES
 Identifies the directory where archive libraries and objects are
 found that are used during the link phase.
 Default: $APEX_HOME/$APEX_ARCH/lib (native systems),
 $APEX_BASE/ada/compilers/<target_family>.<version>/
 <compiler_variant>/usr(cross systems)

TARGET_DIRECTORY
 Target directory. Default: " "

TARGET_MACHINE
 Host name of the target machine. Default: " "

USER_LINK_BLOCK
 Sets the start address in target memory for linking the first user
 program. Default: target dependent address

 A-6

 APPENDIX B

 POINTS OF CONTACT

Ada Validation Facility

 Phil Brashear, AVF Manager
 Electronic Data Systems
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.
 Phone : (937) 237-4510
 Internet : brashp@dysmailpo.deisoh.msd.eds.com

Ada Validation Organization

 Mr. Clyde Roby
 Institute for Defense Analyses
 1801 N. Beauregard Street
 Alexandria VA 22311
 U.S.A.
 Phone : (703) 845-6666
 FAX : (703) 345-6848
 Internet : avo@sw-eng.falls-church.va.us

Ada Joint Program Office

 Joan McGarity
 Center for Software
 Defense Information Systems Agency
 5600 Columbia Pike
 Falls Church VA 22041
 U.S.A.
 Phone : (703) 681-2453
 Internet: mcgaritj@ncr.disa.mil

 B-1

POINTS OF CONTACT

For technical and sales information about this Ada implementation, contact:

 Sam Quiring
 Rational Software Corporation
 1600 NW Compton Drive, Suite 357
 Aloha OR 97006
 (503) 690-1116 x6732

 B-2

 APPENDIX C

 REFERENCES

[Ada95] Reference Manual for the Ada Programming Language,
 ANSI/ISO/IEC 8652:1995

[Pro97] Ada Compiler Validation Procedures, Version 5.0,
 Ada Validation Organization and Ada Joint
 Program Office, March 1997

[UG97] The Ada Compiler Validation Capability Version 2.1
 User's Guide, Revision 1, SAIC and CTA, March 1997

 C-1

REFERENCES

 end of document

 (REMOVE THIS PAGE)

