
 AVF Control Number: EDS19980514AON03-2.1
 DATE COMPLETED
 BEFORE ON-SITE: 14 AUG 98
 AFTER ON-SITE: 28 AUG 98

 Ada COMPILER
 VALIDATION SUMMARY REPORT:
 Certificate Number: 980818e2.1-035
 Aonix
 ObjectAda Real-Time for Intel / ETS, Version 7.1.2
 Gateway G6-200 (200Mhz Pentium Pro) under Windows NT, 4.0 =>
 Compuadd 466e/Dx2 (80486) under Phar Lap Embedded Tool Set (ETS), 9.1

 (Final)

 Prepared By:
 Ada Validation Facility
 Electronic Data Systems
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.

 TABLE OF CONTENTS

Preface

Validation Certificate

Declaration of Conformance

CHAPTER 1 INTRODUCTION

 1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
 1.2 ACVC TEST CLASSES 1-1
 1.3 LEGACY TESTS. 1-2
 1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

 2.1 INAPPLICABLE TESTS. 2-1
 2.2 MODIFICATIONS 2-3
 2.3 UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED . 2-11
 NEEDS ANNEXES

CHAPTER 3 PROCESSING INFORMATION

 3.1 VALIDATION PROCESS. 3-1
 3.2 MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES 3-2
 3.2.1 Macro Parameters. 3-2
 3.2.1.1 Package ImpDef. 3-4
 3.2.1.2 Package ImpDef.Annex_C. 3-12
 3.2.1.3 Package ImpDef.Annex_D. 3-15
 3.3 WITHDRAWN TESTS 3-16

APPENDIX A COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

APPENDIX B POINTS OF CONTACT

APPENDIX C REFERENCES

 i

 AVF Control Number: EDS19980514AON03-2.1

PREFACE

This report documents the validation testing of an Ada 95 implementation.
This testing was conducted according to the Ada Compiler Validation
Procedures version 5.0 using the Ada Compiler Validation Capability test
suite version 2.1, and completed 18 August 1998.

The successful completion of validation testing is the basis for the Ada
certification body's issuance of a validation certificate and for subsequent
registration of derived implementations. A copy of the validation
certificate 980818e2.1-035 which was awarded for this validation is presented
on the following page. Validation testing does not ensure that an
implementation has no nonconformities to the Ada 95 standard other than
those, if any, documented in this report. The compiler vendor declares that
the tested implementation contains no deliberate deviation from the Ada 95
standard; a copy of this Declaration of Conformance is presented immediately
after the certificate page.

This report has been reviewed and approved by the signatories below. These
organizations attest that, to the best of their knowledge, this report is
accurate and complete; however, they make no warrant, express or implied,
that omissions or errors have not occurred.

 Ada Validation Facility
 Phil Brashear, AVF Manager
 Electronic Data Systems
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.

_________________________________ _________________________________
Ada Validation Organization Ada Joint Program Office
Director, Computer and Software Director
 Engineering Division Center for Information Management
Institute for Defense Analyses Defense Information Systems Agency
Alexandria VA 22311 Alexandria VA 22041
U.S.A. U.S.A.

 (Insert copy of certificate here)

Results Summary for 980818e2.1-035

 Specialized Needs Annexes

Note: Tests allocated to these annexes are processed only when the vendor
claims support.

 --
| SPECIALIZED | Total | With- | Passed | Inappli- | Unsup- |
NEEDS ANNEXES		Drawn		cable	ported
C Systems					
Programming	24	2	22	0	0
& required Section 13	161	1	160	0	0
(representation support)	---	---	---	---	---
	185	3	182	0	0
 --
D Real-Time					
Systems					
(which requires Annex C)	58	5	46	7	0
 --
| E Distributed | | | | | |
| Systems | 26| *** not processed *** |
 --
| F Information | | | | | |
| Systems | 21| *** not processed *** |
 --
| | | | | | |
| G Numerics | 29| *** not processed *** |
 --
| H Safety and | | | | | |
| Security | 30| *** not processed *** |
 --

 Attachment to VC 980818e2.1-035:
 Quantitative Validation Test Results

DECLARATION OF CONFORMANCE
__

 Customer: Aonix

 Ada Validation Facility: Electronic Data Systems
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.

 ACVC Version: 2.1

 Ada Implementation

 Ada Compiler Name and Version: ObjectAda Real-Time for Intel / ETS,
 Version 7.1.2

 Host Computer System: Gateway G6-200 (200Mhz Pentium Pro)
 Windows NT, 4.0

 Target Computer System: Compuadd 466e/Dx2 (80486)
 Phar Lap Embedded Tool Set (ETS), 9.1

 Declaration

 I, the undersigned, declare that I have no knowledge of deliberate
 deviations from the Ada Language Standard ANSI/ISO/IEC 8652:1995,
 FIPS PUB 119-1 other than the omission of features as documented
 in this Validation Summary Report.

 ______________________________ _____________
 Customer Signature Date

 CHAPTER 1

 INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro97] against the Ada Standard [Ada95] using the Ada
Compiler Validation Capability (ACVC) Version 2.1. This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro97].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG97].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). Validated status is awarded only to the
implementation identified in this report. Copies of this report are
available to the public from the AVF that performed this validation.

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to the Ada Validation
Organization. For all points of contact see Appendix B.

1.2 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
most Class L tests are expected to produce errors at compile time and link
time,respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK_FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler

 1-1

INTRODUCTION

optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 contains constants of type SYSTEM.ADDRESS.
These constants are used by selected Section 13 tests and by isolated tests
for other sections. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for the Input-Output
features of the Ada Standard, defined in Annex A of [Ada 95]. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. If these
units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the Class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. In most
Class L tests, errors are expected at link time, and execution must not
begin. Other L tests may execute and report the appropriate result.

For some tests of the ACVC, certain implementation-specific values must be
supplied. Two insertion methods for the implementation-specific values are
used: a macro substitution on the source file level of the test, and linking
of a package that contains the implementation specific values. Details are
described in [UG97]. A list of the values used for this implementation,
along with the specification and body of the package (and children applicable
to any of Specialized Needs Annexes being tested) are provided in Section 3.2
of this report.

In addition to these anticipated test modifications, changes may be required
to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are
described in Section 2.2.

For the validation of each Ada implementation, a customized test suite is
produced by the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see Section
2.1), and possibly removing some inapplicable tests (see Section 2.1 and
[UG97]).

1.3 LEGACY TESTS

ACVC 2.1 consists of legacy tests and tests specific to Ada 95. The legacy
tests were taken from ACVC 1.12 with possibly minor modifications to remove
incompatibilities with Ada 95. The remaining tests were developed in order
to test new features of Ada 95. A consequence of this approach is that the
naming conventions for tests are not uniform. The test name of a legacy test
always refers to the Ada 83 Standard, even if the feature covered by the test
was moved to a different section in [Ada95].

 1-2

 INTRODUCTION

1.4 DEFINITION OF TERMS

Acceptable A result that is explicitly allowed by the grading criteria
result of the test program for a grade of passed or inapplicable.

Ada compiler The software and any needed hardware that have to be added to
 a given host and target computer system to allow
 transformation of Ada programs into executable form and
 execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide, and the template for the Validation Summary
(ACVC) Report.

ACVC The part of the certification body that maintains the ACVC.
Maintenance
Organization
(AMO)

Ada An Ada compilation system, including any required runtime
Implementation support software, together with its host computer system and
 its target computer system.

Ada Joint The part of the certification body which provides policy and
Program Office guidance for the Ada certification system.
(AJPO)

Ada Validation The part of the certification body which carries out the
Facility (AVF) procedures required to establish the compliance of an Ada
 implementation.

Ada Validation The part of the certification body that provides technical
Organization guidance for operations of the Ada certification system.
(AVO)

Certification The organizations (AJPO, AVO, AVFs), collectively responsible
Body for defining and implementing Ada validation policy, includ-
 ing production and maintenance of the ACVC tests, and
 awarding of Ada validation certificates.

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part
 of a program and also for all or part of the data necessary
 for the execution of the program; executes user-written or
 user-designated programs; performs user-designated data
 manipulation, including arithmetic operations and logic

 1-3

INTRODUCTION

 operations; and that can execute programs that modify
 themselves during execution. A computer system may be a
 stand-alone unit or may consist of several inter-connected
 units.

Conformity Fulfillment by a product, process or service of all
 requirements specified.

Customer An individual or corporate entity who enters into an
 agreement with an AVF which specifies the terms and
 conditions for AVF services (of any kind) to be performed.

Declaration A formal statement from a customer assuring that conformity
of Conformance is realized or is attainable on the Ada implementation for
 which validation status is realized.

Foundation An Ada package used by multiple tests. Foundation units are
Unit designed to be reusable. A valid foundation unit must be in
(Foundation the Ada library for those tests that are dependent on the
Code) foundation unit.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to
Test be irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,
 input/output control, and data management.

Specialized One of annexes C through H of [Ada95]. Validation against
Needs Annex one or more specialized needs annexes is optional. For each
 annex, there is a test set that applies to it. In addition
 to all core language tests, the appropriate set of tests must
 be processed satisfactorily for an implementation to be
 validated for a specialized needs annex.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Unsupported A test for a language feature that is not required to be
Feature Test supported, because it is based upon a requirement stated in
 an Ada 95 Specialized Needs Annex.

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro97].

 1-4

 INTRODUCTION

Validation The process of checking the conformity of an Ada compiler
 to the Ada programming language and of issuing a certificate
 for this implementation.

Withdrawn Test A test found to be incorrect and not used in conformity
 testing. A test may be incorrect because it has an invalid
 test objective, fails to meet its test objective, or contains
 erroneous or illegal use of the Ada programming language.

 1-5

 CHAPTER 2

 IMPLEMENTATION DEPENDENCIES

2.1 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI95-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

 C45322A, C45523A, and C45622A check that the proper exception is raised
 if MACHINE_OVERFLOWS is TRUE and the results of various floating-point
 operations lie outside the range of the base type; for this
 implementation, MACHINE_OVERFLOWS is FALSE.

 C45531M..P and C45532M..P (8 tests) check fixed-point operations for
 types that require a SYSTEM.MAX_MANTISSA of 47 or greater; for this
 implementation, MAX_MANTISSA is less than 47.

 C4A012B checks that the proper exception is raised when
 FLOAT'MACHINE_OVERFLOWS is TRUE for negative powers of 0.0; for this
 implementation, FLOAT'MACHINE_OVERFLOWS is FALSE.

 C96005B uses values of type DURATION's base type that are outside the
 range of type DURATION; for this implementation, the ranges are the
 same.

 CD1009C checks whether a length clause can specify a non-default size
 for a floating-point type; this implementation does not support such
 sizes.

 BD8001A, BD8002A, BD8003A, BD8004A..C (3 tests), and AD8011A use machine
 code insertions; this implementation provides no package MACHINE_CODE.

 2-1

IMPLEMENTATION DEPENDENCIES

 The tests listed in the following table check that USE_ERROR is raised
 if the given file operations are not supported for the given combination
 of mode and access method; this implementation supports these
 operations.

 Test File Operation Mode File Access Method
 --
 CE2102E CREATE OUT_FILE SEQUENTIAL_IO
 CE2102F CREATE INOUT_FILE DIRECT_IO
 CE2102J CREATE OUT_FILE DIRECT_IO
 CE2102N OPEN IN_FILE SEQUENTIAL_IO
 CE2102O RESET IN_FILE SEQUENTIAL_IO
 CE2102P OPEN OUT_FILE SEQUENTIAL_IO
 CE2102Q RESET OUT_FILE SEQUENTIAL_IO
 CE2102R OPEN INOUT_FILE DIRECT_IO
 CE2102S RESET INOUT_FILE DIRECT_IO
 CE2102T OPEN IN_FILE DIRECT_IO
 CE2102U RESET IN_FILE DIRECT_IO
 CE2102V OPEN OUT_FILE DIRECT_IO
 CE2102W RESET OUT_FILE DIRECT_IO
 CE3102F RESET Any Mode TEXT_IO
 CE3102G DELETE -------- TEXT_IO
 CE3102I CREATE OUT_FILE TEXT_IO
 CE3102J OPEN IN_FILE TEXT_IO
 CE3102K OPEN OUT_FILE TEXT_IO.

 CE2203A checks that WRITE raises USE_ERROR if the capacity of an
 external sequential file is exceeded; this implementation cannot
 restrict file capacity.

 CE2403A checks that WRITE raises USE_ERROR if the capacity of an
 external direct file is exceeded; this implementation cannot restrict
 file capacity.

 CE3115A checks operations on text files when multiple internal files are
 associated with the same external file and one or more are open for
 writing; USE_ERROR is raised when this association is attempted.

 CE3304A checks that SET_LINE_LENGTH and SET_PAGE_LENGTH raise USE_ERROR
 if they specify an inappropriate value for the external file; there are
 no inappropriate values for this implementation.

 CE3413B checks that PAGE raises LAYOUT_ERROR when the value of the page
 number exceeds COUNT'LAST; for this implementation, the value of
 COUNT'LAST is greater than 150000, making the checking of this objective
 impractical.

 CXB4001..9 (9 tests) depend on the availability of an interface to
 COBOL; this implementation does not support Cobol interfaces. (See
 Section 2.2 re CXB4001.)

 2-2

 IMPLEMENTATION DEPENDENCIES

 CXB5001..5 (5 tests) depend upon the availability of an interface to
 Fortran; this implementation does not support Fortran interfaces. (See
 Section 2.2 re CXB5004.)

 CXD2001..3, CXD2007..8, CXD6002, and CXD6003 (7 tests) test objectives
 that are valid only for uni-processor implementations. This
 implementation is time sliced. (See Section 2.2 re CXD6002.)

2.2 MODIFICATIONS

In order to comply with the test objective it may be required to modify the
test source code, the test processing method, or the test evaluation method.
Modifications are allowable because at the time of test writing not all
possible execution environments of the test and the capabilities of the
compiler could be foreseen. Possible kinds of modification are:

 o Test Modification: The source code of the test is changed.
 Examples for test modifications are the insertion of a pragma, the
 insertion of a representation clause, or the splitting of a B-test into
 several individual tests, if the compiler does not detect all intended
 errors in the original test.

 o Processing Modification: The processing of the test by the Ada imple-
 mentation for validation is changed.
 Examples for processing modification are the change of the compilation
 order for a test that consists of multiple compilations or the
 additional compilation of a specific support unit in the library.

 o Evaluation Modification: The evaluation of a test result is changed.
 An example for evaluation modification is the grading of a test other
 than the output from REPORT.RESULT indicates. This may be required if
 the test makes assumptions about implementation features that are not
 supported by the implementation (e.g., the implementation of a file
 system on a bare target machine).

All modifications have been directed by the AVO after consulting the AVF and
the customer on the technical justification of the modification.

Modifications were required for 48 tests (BXC6A04 is listed twice).

 The following 11 tests were split into two or more tests because this
 implementation did not report the violations of the Ada Standard in the
 way expected by the original tests.

 B23004A B24204D B32201A B44004C B55A01A
 B830001 BA1101E BA3006A BC2001D BC51017
 BXC6A04

 2-3

IMPLEMENTATION DEPENDENCIES

 B393006 and BC51C02, as directed by the AVO, were graded passed with the
 following code modification:

 for B393006, comment out lines 102 & 103; 112..119;
 for BC51C02, comment out line 194

 These code modifications remove unintended illegalities from the test
 programs, while retaining all intended illegalities (the check that is
 lost is that compilers don't wrongly treat Func as overriding in cases
 where it isn't--however, in these cases, it can't be legally declared
 for the particular checks).

 C3A2A02, as directed by the AVO, was graded passed with the following
 code modification:

 at line 197, append "pragma Elaborate (C3A2A02_0);"

 The library-level instantiation C3A2A02_3 on line 198 can fail
 elaboration if the body of the generic package C3A2A02_0 is elaborated
 later than the instantiation.

 B610001, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 221, 223, 225, & 228

 These lines are ambiguous, by ARM 3.10.2(2) and 8.6(27).

 C760009, as directed by the AVO, was graded passed with the following
 code modification:

 at line 86, add "pragma Elaborate_Body;"

 The instantiation C760009_3.Check_1 on line 277 can fail elaboration if
 the body of the generic package C760009_0 is elaborated later than the
 instantiation.

 C760010, as directed by the AVO, was graded passed with the following
 code modification:

 at line 105, add "pragma Elaborate_Body;"

 The library-level instantiation C760010_2 on line 225 can fail
 elaboration if the body of the generic package
 C760010_0.Check_Formal_Tagged is elaborated later than the
 instantiation.

 2-4

 IMPLEMENTATION DEPENDENCIES

 C761007, as directed by the AVO, was graded passed with the following
 code modification:

 replace line 376
 TCTouch.Validate("GHGHIJ", "Asynchronously aborted operation");
 with:
 TCTouch.Validate("GHIJ", "Asynchronously aborted operation");

 The original code will cause the check at line 376 to be failed because
 the procedures C761007_0.Finalize (@87ff) and C761007_1.Finalize
 (@133ff) both ensure that no duplicate characters are put into the check
 string. (The AVO requires this change so to retain this test for
 finalization, as several related test programs are withdrawn.)

 B83E01C, B83E01D, and B83E01E, as directed by the AVO, were processed
 with the following grading modification:

 the intended illegalities
 for B83E01C at lines 172 & 177 (which are marked with "ERROR")
 for B83E01D at lines 302 & 307 (which are marked with "ERROR")
 for B83E01C, file 3, at lines 56 & 61 (which are marked with "ERROR")
 may be regarded instead as ""optional error"s--i.e., they need not
 have corresponding diagnostic output from the compiler.

 Each of these cases is the declaration of a generic subprogram body.
 The only other modification that would address a compiler's failure to
 detect these lines as errors would be to split the test with the generic
 subprogram declarations removed; but this would simply duplicate the
 cases of the non-generic subprogram bodies, which are checked elsewhere
 in these test programs.

 C980001, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 251 & 274 (=> -- C980001_0.Hold_Up.Lock)

 This modification is necessary in order to prevent the test from hanging
 with a queued call to the protected object C980001_0.Hold_Up.

 CA2009C and CA2009F, as directed by the AVO, were graded passed with the
 following code modification:

 delete the control-Z characters from each of the test files

 2-5

IMPLEMENTATION DEPENDENCIES

 BA21003, as directed by the AVO, was graded passed with the following
 processing modification:

 split the test file BA210031 at line 163, removing the subunit
 body of package Bad_Subunit from this otherwise error-free
 compilation; process the subunit as a separate compilation.

 The Ada 95 standard 10.1(4) allows an implementation "to impose
 implementation-defined restrictions on compilations that contain
 multiple compilation_units", such as requiring all such units to be
 error free.

 EA3004G was graded passed by grading modification as directed by the
 AVO. This test expects the reference to an obsolete unit to be detected
 at compile time; this implementation makes the detection at link time.

 CA5004B was graded passed by Processing Modification as directed by the
 AVO. This test checks that an pragma Elaborate is obeyed when it is
 given for a unit whose body has yet to be compiled or is replaced.
 However, this implementation doesn't permit a compilation to contain
 units with the same name, as allowed by [Ada95] 10.1(4). The test file
 CA5004B0 was split at line 67 into 2 separate files.

 BC3503A, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 100, 109, & 118 (these lines are LEGAL in Ada 95)

 Each of the package instantiations PS3, PR3, & PP3 is legal in Ada 95,
 as the requirement for matching in Ada 95 is for the formal and actual
 access TYPES' (not the actual SUBtype's) designated subtypes.

 BC3503C, as directed by the AVO, was graded passed with the following
 code modification:

 comment out line 63 (this line is LEGAL in Ada 95)

 The package instantiation PU3 is legal in Ada 95 (see BC3503A's entry).

 2-6

 IMPLEMENTATION DEPENDENCIES

 CD30002, as directed by the AVO, was graded passed with the following
 code modifications:

 replace lines 75 & 76 with
 type Storage_Element is new System.Storage_Elements.Storage_Element;
 for Storage_Element'Alignment use Impdef.Max_Default_Alignment /4 ;
 --INSERTED ALIGNMENT SPEC TO DOUBLE SIZE OF ARRAY COMPONENT TYPE
 replace lines 128-130 with
 Half_Object : CD30002_0.O_Half;
 for Half_Object'Alignment
 -- use CD30002_0.S_Units_per_Word * 2; -- N/A => ERROR.
 use CD30002_0.Multiple_Alignment; -- AVO CODE MODIFICATION.

 This implementation does not accept values for alignment that imply a
 size that is larger than what the implementation supports for the type;
 an Alignment clause can influence which size the implementation uses.
 The code modifications above specify a larger-than-default alignment for
 Storage_Element, which effectively doubles the size of an array of four
 such components such that the array type can be given the maximum
 default alignment of eight. The change to use Multiple_Alignment
 reduces the implied size to an acceptable value (and also brings the
 alignment clause into agreement with a later check on this value!). At
 the time of this validation, the ARG had recently tentatively agreed
 that a compiler need not support alignments greater than the size of the
 subtype/object (cf AI95-00109/07).

 CD30005, as directed by the AVO, was graded passed with the following
 code modification:

 at lines 134 & 148 of test file cd300050,
 change the procedure identifier from 'CD30005' to 'CD300050'.

 This change will bring the main procedure name into conformity with the
 ACVC main-unit naming convention (and simplify ACVC processing).

 CD33002, as directed by the AVO, was graded passed by code & processing
 modifications. This test checks that various Component_Sizes are able
 to be specified, with the proper results. But the Component_Size value
 specified at line 74 exceeds what this implementation must support (cf.
 AI95-00109/07), and so is rejected at compile time. This test was also
 processed with lines 73 & 74 commented out; the modified test was
 passed.

 CXA5012, as directed by the AVO, was graded passed with the following
 code modification:

 at line 86, change '100_000' to '10_000'

 This code modification is necessary for any implementation that defines
 type Integer to have a 16-bit range.

 2-7

IMPLEMENTATION DEPENDENCIES

 CXA5015, as directed by the AVO, was graded passed with the following
 code modification:

 at line 252 change '4.1' to '4.0'

 At line 255, T'Adjacent (TC_Float,TC_float) /= TC_Float may be True
 because the function result is given at greater precision for non-model
 4.1 than the stored result.

 CXA5A03 and CXA5A04, as directed by the AVO, were graded passed with the
 following code modifications:

 for CXA5A03:
 insert at line 162
 " if New_Float'Machine_Overflows = True then"
 insert at line 174 " end if;"
 insert at line 310
 " if New_Float'Machine_Overflows = True then"
 insert at line 322 " end if;"
 insert at line 323
 " if Float'Machine_Overflows = True then"
 insert at line 335 " end if;"

 for CXA5A04:
 insert at line 103
 " if New_Float'Machine_Overflows = True then"
 insert at line 115 " end if;"
 insert at line 204
 " if New_Float'Machine_Overflows = True then"
 insert at line 237
 " end if; if Float'Machine_Overflows = True then"
 insert at line 251 " end if;"
 insert at line 321
 " if New_Float'Machine_Overflows = True then"
 insert at line 353
 " end if; if Float'Machine_Overflows = True then"
 insert at line 365 " end if;"

 These changes make certain conformity checks conditional upon the value
 of 'Machine_Overflows, as specified by [Ada95] clauses A.5.1(28,34) &
 G.2.4(2,4).

 CXB3008, as directed by the AVO, was graded passed with the following
 code modifications:

 at line 106, insert ' type acc_ptr is access IC.char_array; '
 at line 107, change function String_To_Double's parameter profile
 to: '(The_String : in IC.char_array ; End_Ptr: acc_ptr := null)'
 at line 125, change 'atof' to 'strtod'

 2-8

 IMPLEMENTATION DEPENDENCIES

 This code modification imports the C library's strtod function, which
 has ANSI-defined semantics in the case of a string that doesn't conform
 to the model for a numeric value and so enables the test program to run
 as expected. (In some implementations of the C language, function atof
 will not return the expected value 0.0 in this case; its value is not
 defined.)

 CXB3009, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 264..287

 This change simply removes the entire test block beginning at line 264,
 which checks that Storage_Error is raised as per the standard B.3.1(28).
 There are many reasons why the expected Storage_Error might not be
 raised --too much available storage, too little time, even storage
 reclamation!

 CXB3010, as directed by the AVO, was graded passed with the following
 code modification:

 replicate line 199 at line 256, to update the pointer object's value:

 TC_chars_ptr := ICS.New_Char_Array(TC_char_array_2);

 The change is necessary to ensure that TC_chars_ptr has a valid pointer
 value; the original code references TC_chars_ptr after Free was applied
 to it, and so by B.3.1(51,53) that execution may be erroneous.

 CXB4001, as directed by the AVO, was graded passed with the following
 code modification:

 at line 198: change 'To_Comp' to 'To_Binary'

 The function To_Comp was defined in draft versions of the Ada 95
 standard but was changed to To_Binary for the final (B.4:45).

 CXB4007, as directed by the AVO, was graded passed with the following
 code modification:

 comment out lines 263..268

 The Byte_Array values returned by two calls of To_Binary should not be
 expected to be equal, contrary to this particular check.

 CXB4009, as directed by the AVO, was graded inapplicable with the
 following code modifications:

 2-9

IMPLEMENTATION DEPENDENCIES

 The COBOL files were replaced by the ACVC's revised files maintained
 by the certification body.

 This implementer does not provide the package Interfaces.Cobol and file
 CXB4009.AM is rejected at compile time.

 CXB5004, as directed by the AVO, was graded inapplicable with the
 following code modification:

 at line f0-79, change 'INTARR(3)' to 'INTARR' [nb: not line 81]

 at line f0-83, change 'STR' to 'STR *7'

 The changes specified above are necessary in order to produce a legal
 Fortran program to be used for the test program's interfacing checks.
 However, this implementation does not provide the package
 Interfaces.Fortran and file CXB5004.AM is rejected at compile time.

 BXC6A01, BXC6A02, and BXC6A04, as directed by the AVO, were graded
 passed with the following code modification to the foundation file
 FXC6A00:

 comment out lines 103 & 113

 The application of a pragma Volatile to derived types Volatile_Composite
 and Volatile_Array violates 13.1(10), for these types are untagged
 derived types (with tagged components) whose parent types are
 by-reference types (by 6.2:5,8). The only test that references these
 two types is BXC6A03, and this test is withdrawn (for a similar reason).

 CXD4008, as directed by the AVO, was graded passed with the following
 three sets of code modifications:

 at line 61, change 'FIFO_Queuing' to 'Priority_Queuing'

 at line 134, change 'Last_Entry >=5;' to 'Last_Entry >5;'
 at line 379, append ' Checker.ES;'

 at line 170, append
 ' e1_gate, e2_gate, e3_gate, e4_gate, e5_gate : Boolean := True;'
 at line 176, change 'when Gate =>' to 'when Gate and e1_gate =>'
 at line 183, insert 'e1_gate := false;'
 and make similar changes, respectively, for 'e2_gate' through
 'e5_gate',
 at lines 186/193, 196/203, 206/213, & 216/223

 These changes correct the specified queuing policy (for which the
 subsequent conformity checks are defined), and enable a multi-processor
 to pass this test program. With the original code, the environment task
 can run concurrently with the higher-priority "T" type tasks, and can

 2-10

 IMPLEMENTATION DEPENDENCIES

 check a global results array that may not have yet been fully valued by
 the entry selections, yielding FAILED wrongly. Further, in the checks
 for task entries, a multi-processor can also deviate from the expected
 execution order, as the first tasks whose entry calls are processed by
 the selective accept statement at lines 175ff can make a second like
 entry call and be handled by this same selective accept (instead of by
 the one at lines 263ff, as intended). The first change corrects the
 queuing-policy problem, the second set of changes addresses the problem
 of concurrent execution of the environment task, and the third addresses
 the problem of processing the set of task-entry calls (in effect, the
 particular accept statement is closed after a call has been accepted).

 CXD6001, as directed by the AVO, was graded passed with the following
 code modifications:

 at line 114 insert 'with ImpDef;'
 at lines 270, 285, & 300 append ' Delay ImpDef.Clear_Ready_Queue;'

 This delay statement will enable the Victim_Type tasks to complete
 before Check_Results is called.

 CXD6002, as directed by the AVO, was graded passed with the following
 code modification:

 insert immediately after line 348: CXD6002_1.Done;
 (i.e., replicate line 357 here)

 On a non-uni-processor system, this code is necessary to terminate the
 task CXD6002_1.Weapon (line 110).

2.3 UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED NEEDS ANNEXES

 As allowed by [Ada95], an implementation need not support any of the
 capabilities specified by a Specialized Needs Annex, or it may support
 some or all of them. For validation testing, each set of tests for a
 particular Annex is processed only upon customer request, but is
 processed in full (even if the Ada implementation provides only partial
 support). When such a test cannot be passed, because the implementation
 provides only partial support, the result is graded "unsupported"
 (rather than "inapplicable").

 The set of tests for each of the following Specialized Needs Annexes was
 not processed during this validation testing:

 Annex E, Distributed Systems (all BXE* & CXE* files)
 Annex F, Information Systems (all BXF* & CXF* files)
 Annex G, Numerics (all CXG* files)
 Annex H, Safety and Security (all BXH*, CXH*, & LXH* files)

 2-11

IMPLEMENTATION DEPENDENCIES

 The following tests for Annex C, Systems Programming, were graded
 "unsupported": none.

 The following tests for Annex D, Real-Time Systems, were graded
 "unsupported": none.

 2-12

 CHAPTER 3

 PROCESSING INFORMATION

3.1 VALIDATION PROCESS

A full prevalidation was conducted at the AVF's site.

Validation testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

A floppy diskette containing the customized test suite (see Section 1.3) was
taken on-site by the validation team for processing. The contents of the
floppy diskette were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system and run.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix A for a complete listing of
the processing options for this implementation. It also indicates the
default options.

The options invoked explicitly for validation testing during this test were:

 Option Meaning

 -gc Generate CodeView information.
 -ga Generate Ada Debugging information.
 -lc Generate continuous source listing interspersed
 with messages.
 -na No autoregistration.
 -nc No recompilations.

 3-1

PROCESSING INFORMATION

Test output, compiler and linker listings, and job logs were captured on
floppy diskette and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.2 MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

This section contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG97]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN_LEN, also listed here. These values are expressed in a
symbolic notation, using placeholders as appropriate.

3.2.1 Macro Parameters

Macro Parameter Macro Value
--

$MAX_IN_LEN 200

$BIG_ID1 AAA ... A1 (200 characters)

$BIG_ID2 AAA ... A2 (200 characters)

$BIG_ID3 AAA ... A3A ... A (200 characters)

$BIG_ID4 AAA ... A4A ... A (200 characters)

$BIG_STRING1 "AAA ... A" (200/2 characters)

$BIG_STRING2 "AAA ... A1" ((200/2)-1 characters)

$BLANKS " ... " (200-20 blanks)

$MAX_STRING_LITERAL "AAA ... A" (200 characters)

--

$ACC_SIZE 32

$ALIGNMENT 4

$COUNT_LAST 16#7FFFFFFF#

$ENTRY_ADDRESS FCNDECL.DATA(4)'ADDRESS

$ENTRY_ADDRESS1 FCNDECL.DATA(5)'ADDRESS

$ENTRY_ADDRESS2 FCNDECL.DATA(6)'ADDRESS

$FIELD_LAST 16#7FFFFFFF#

 3-2

 PROCESSING INFORMATION

$FORM_STRING ""

$FORM_STRING2 "CANNOT_RESTRICT_FILE_CAPACITY"

$GREATER_THAN_DURATION 75_000.0

$ILLEGAL_EXTERNAL_FILE_NAME1 \NODIRECTORY\FILENAME

$ILLEGAL_EXTERNAL_FILE_NAME2 Not even\close to being a\file name

$INAPPROPRIATE_LINE_LENGTH -1

$INAPPROPRIATE_PAGE_LENGTH -1

$INTEGER_FIRST -2147483648

$INTEGER_LAST 2147483647

$LESS_THAN_DURATION -75_000.0

$MACHINE_CODE_STATEMENT NULL;

$MAX_INT 2147483647

$MIN_INT -2147483648

$NAME SHORT_SHORT_INTEGER

$NAME_SPECIFICATION1 A:\X2120A

$NAME_SPECIFICATION2 A:\X2120B

$NAME_SPECIFICATION3 A:\X3119A

$OPTIONAL_DISC NO_SUCH_MACHINE_CODE_DISC

$RECORD_DEFINITION RECORD NULL; END RECORD;

$RECORD_NAME NO_SUCH_MACHINE_CODE_TYPE

$TASK_SIZE 128

$TASK_STORAGE_SIZE 1024

$VARIABLE_ADDRESS FCNDECL.DATA(1)'ADDRESS

$VARIABLE_ADDRESS1 FCNDECL.DATA(2)'ADDRESS

$VARIABLE_ADDRESS2 FCNDECL.DATA(3)'ADDRESS

 3-3

PROCESSING INFORMATION

Package ImpDef and Its Children

The package ImpDef is used by several tests of core language features.
Before use in ACVC testing, this package is modified to specify certain
implementation-defined features. In addition, package ImpDef has a child
package for each Specialized Needs Annex, each of which may need similar
modifications. The child packages are independent of one another, and are
used only by tests for their respective annexes.

This section presents the package ImpDef as it was. In the interests of
simplifying this VSR, the header comment block was removed from the package
file.

3.2.1.1 Package ImpDef
-- IMPDEF.A
--
--!

with Report;
with Ada.Text_IO;
with System.Storage_Elements;
with System.RTS.TGT.Kernel.Threads.NT;
package ImpDef is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following boolean constants indicate whether this validation will
 -- include any of annexes C-H. The values of these booleans affect the
 -- behavior of the test result reporting software.
 --
 -- True means the associated annex IS included in the validation.
 -- False means the associated annex is NOT included.

 Validating_Annex_C : constant Boolean := True;

 Validating_Annex_D : constant Boolean := True;

 -- ^^^^^ --- MODIFY HERE AS NEEDED

 3-4

 PROCESSING INFORMATION

 Validating_Annex_E : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_F : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_G : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_H : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the minimum time required to allow another task to get
 -- control. It is expected that the task is on the Ready queue.
 -- A duration of 0.0 would normally be sufficient but some number
 -- greater than that is expected.

 Minimum_Task_Switch : constant Duration := 0.1;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the time required to activate another task and allow it
 -- to run to its first accept statement. We are considering a simple task
 -- with very few Ada statements before the accept. An implementation is
 -- free to specify a delay of several seconds, or even minutes if need be.
 -- The main effect of specifying a longer delay than necessary will be an
 -- extension of the time needed to run the associated tests.

 Switch_To_New_Task : constant Duration := 1.0;
 -- ^^^ -- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the time which will clear the queues of other tasks
 -- waiting to run. It is expected that this will be about five
 -- times greater than Switch_To_New_Task.

 Clear_Ready_Queue : constant Duration := 5.0;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Some implementations will boot with the time set to 1901/1/1/0.0
 -- When a delay of Delay_For_Time_Past is given, the implementation
 -- guarantees that a subsequent call to Ada.Calendar.Time_Of(1901,1,1)
 -- will yield a time that has already passed (for example, when used in
 -- a delay_until statement).

 Delay_For_Time_Past : constant Duration := 0.1;
 -- ^^^ --- MODIFY HERE AS NEEDED

 3-5

PROCESSING INFORMATION

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Minimum time interval between calls to the time dependent Reset
 -- procedures in Float_Random and Discrete_Random packages that is
 -- guaranteed to initiate different sequences. See RM A.5.2(45).

 Time_Dependent_Reset : constant Duration := 0.3;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Test CXA5013 will loop, trying to generate the required sequence
 -- of random numbers. If the RNG is faulty, the required sequence
 -- will never be generated. Delay_Per_Random_Test is a time-out value
 -- which allows the test to run for a period of time after which the
 -- test is failed if the required sequence has not been produced.
 -- This value should be the time allowed for the test to run before it
 -- times out. It should be long enough to allow multiple (independent)
 -- runs of the testing code, each generating up to 1000 random
 -- numbers.

 Delay_Per_Random_Test : constant Duration := 1.0;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The time required to execute this procedure must be greater than the
 -- time slice unit on implementations which use time slicing. For
 -- implementations which do not use time slicing the body can be null.

 procedure Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This constant must not depict a random number generator state value.
 -- Using this string in a call to function Value from either the
 -- Discrete_Random or Float_Random packages will result in
 -- Constraint_Error (expected result in test CXA5012).

 Non_State_String : constant String := "By No Means A State";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This string constant must be a legal external tag value as used by
 -- CD10001 for the type Some_Tagged_Type in the representation
 -- specification for the value of 'External_Tag.

 External_Tag_Value : constant String := "implementation_defined";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following address constant must be a valid address to locate

 3-6

 PROCESSING INFORMATION

 -- the C program CD30005_1. It is shown here as a named number;

 -- the implementation may choose to type the constant as appropriate.

 -- gs CD30005_1_Foreign_Address : constant System.Address:=

 -- gs System.Storage_Elements.To_Address (16#0000_0000#);

 -- gs MODIFY HERE AS REQUIRED --- ^^^^^^^^^^^^^

--gs

 function CD30005_1_Foreign_Address return System.Address;

 pragma Import(C, CD30005_1_Foreign_Address, "_cd30005_address");

 -- see cd300051.c

 -- char * _cd30005_address (void) {

 -- return _cd30005_1;

 -- }

 --

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-7

PROCESSING INFORMATION

 -- The following string constant must be the external name resulting

 -- from the C compilation of CD30005_1. The string will be used as an

 -- argument to pragma Import.

 CD30005_1_External_Name : constant String := "cd30005_1";

 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following constants should represent the largest default alignment

 -- value and the largest alignment value supported by the linker.

 -- See RM 13.3(35).

 Max_Default_Alignment : constant := 4;

 -- ^ --- MODIFY HERE AS NEEDED

 Max_Linker_Alignment : constant := 4;

 3-8

 PROCESSING INFORMATION

 -- ^ --- MODIFY HERE AS NEEDED
--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the C compilation of CXB30130.C and CXB30131.C. The strings
 -- will be used as arguments to pragma Import.

 CXB30130_External_Name : constant String := "CXB30130";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB30131_External_Name : constant String := "CXB30131";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the COBOL compilation of CXB40090.CBL, CXB40091.CBL, and
 -- CXB40092.CBL. The strings will be used as arguments to pragma Import.

 CXB40090_External_Name : constant String := "CXB40090";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB40091_External_Name : constant String := "CXB40091";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB40092_External_Name : constant String := "CXB40092";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the Fortran compilation of CXB50040.FTN, CXB50041.FTN,
 -- CXB50050.FTN, and CXB50051.FTN.
 --
 -- The strings will be used as arguments to pragma Import.
 --
 -- Note that the use of these four string constants will be split between
 -- two tests, CXB5004 and CXB5005.

 CXB50040_External_Name : constant String := "CXB50040";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB50041_External_Name : constant String := "CXB50041";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB50050_External_Name : constant String := "CXB50050";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB50051_External_Name : constant String := "CXB50051";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-9

PROCESSING INFORMATION

 -- The following constants have been defined for use with the
 -- representation clause in FXACA00 of type Sales_Record_Type.
 --
 -- Char_Bits should be an integer at least as large as the number
 -- of bits needed to hold a character in an array.
 -- A value of 6 * Char_Bits will be used in a representation clause
 -- to reserve space for a six character string.
 --
 -- Next_Storage_Slot should indicate the next storage unit in the record
 -- representation clause that does not overlap the storage designated for
 -- the six character string.

 Char_Bits : constant := 8;
 -- MODIFY HERE AS NEEDED ---^

 Next_Storage_Slot : constant := 6;
 -- MODIFY HERE AS NEEDED ---^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constant must be the path name for the .AW
 -- files that will be processed by the Wide Character processor to
 -- create the C250001 and C250002 tests. The Wide Character processor
 -- will expect to find the files to process at this location.

 Test_Path_Root : constant String := "i:\ac21\acvcres\c2\src\";

 -- ^^^ --- MODIFY HERE AS NEEDED

 -- The following two strings must not be modified unless the .AW file
 -- names have been changed. The Wide Character processor will use
 -- these strings to find the .AW files used in creating the C250001
 -- and C250002 tests.

 Wide_Character_Test : constant String := Test_Path_Root & "c250001";
 Upper_Latin_Test : constant String := Test_Path_Root & "c250002";

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following instance of Integer_IO or Modular_IO must be supplied
 -- in order for test CD72A02 to compile correctly.
 -- Depending on the choice of base type used for the type
 -- System.Storage_Elements.Integer_Address; one of the two instances will
 -- be correct. Comment out the incorrect instance.

 package Address_Value_IO is
 new Ada.Text_IO.Integer_IO(System.Storage_Elements.Integer_Address);

 --M package Address_Value_IO is

 3-10

 PROCESSING INFORMATION

 --M new
Ada.Text_IO.Modular_IO(System.Storage_Elements.Integer_Address);

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef;

 --==--

package body ImpDef is

 -- NOTE: These are example bodies. It is expected that implementors
 -- will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The time required to execute this procedure must be greater than the
 -- time slice unit on implementations which use time slicing. For
 -- implementations which do not use time slicing the body can be null.

 Procedure Exceed_Time_Slice is
 T : Integer := 0;
 Loop_Max : constant Integer := 4_000;
 begin
 for I in 1..Loop_Max loop
 T := Report.Ident_Int (1) * Report.Ident_Int (2);
 end loop;
 end Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef;

 3-11

PROCESSING INFORMATION

3.2.1.2 Package ImpDef.Annex_C
-- IMPDEFC.A
--
--!
with Machine_Operations_386;
use Machine_Operations_386;
with Ada.Interrupts.Names;
with System.RTS.TGT.Kernel.Threads.NT;

package ImpDef.Annex_C is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Interrupt_To_Generate should identify a non-reserved interrupt
 -- that can be predictably generated within a reasonable time interval
 -- (as specified by the constant Wait_For_Interrupt) during testing.

 Interrupt_To_Generate: constant Ada.Interrupts.Interrupt_ID :=
Ada.Interrupts.Interrupt_I
D'First; -- to allow trivial compilation
 -- 16#58#;
 -- Ada.Interrupts.Interrupt_ID'First; -- to allow trivial compilation
 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Wait_For_Interrupt should specify the reasonable time interval during
 -- which the interrupt identified by Interrupt_To_Generate can be
 -- expected to be generated.

 Wait_For_Interrupt : constant := 1.0;
 --10.0; 1.0 ?
 -- ^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Enable_Interrupts should enable interrupts, if this
 -- is required by the implementation. [See additional notes on this
 -- procedure in the package body.]

 procedure Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Generate_Interrupt should generate the interrupt
 -- identified by Interrupt_To_Generate within the time interval
 -- specified by Wait_For_Interrupt. [See additional notes on this
 -- procedure in the package body.]

 procedure Generate_Interrupt;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-12

 PROCESSING INFORMATION

end ImpDef.Annex_C;

 --==--

package body ImpDef.Annex_C is

 -- NOTE: These are example bodies. It is expected that implementors
 -- will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Enable_Interrupts should enable interrupts, if this
 -- is required by the implementation.
 --
 -- The default body is null, since it is expected that most implementations
 -- will not need to perform this step.
 --
 -- Note that Enable_Interrupts will be called only once per test.

 procedure Enable_Interrupts is
 begin
 null;

 -- ^^^^^^^^^^^^^^^^^^^^ MODIFY THIS BODY AS NEEDED ^^^^^^^^^^^^^^^^^^^^

 end Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Generate_Interrupt should generate the interrupt
 -- identified by Interrupt_To_Generate within the time interval
 -- specified by Wait_For_Interrupt.
 --
 -- The default body assumes that an interrupt will be generated by some
 -- physical act during testing. While this approach is acceptable, the
 -- interrupt should ideally be generated by appropriate code in the
 -- procedure body.
 --
 -- Note that Generate_Interrupt may be called multiple times by a single
 -- test. The code used to implement this procedure should account for this
 -- possibility.

 procedure Generate_Interrupt is
 begin
 Report.Comment (". >>>>> GENERATE THE INTERRUPT NOW <<<<< ");

 -- ^^^^^^^^^^^^^^^^^^^^ MODIFY THIS BODY AS NEEDED ^^^^^^^^^^^^^^^^^^^^
 if System.RTS.TGT.Kernel.Threads.NT.rts_is_ets then
 Int(Integer(Interrupt_To_Generate));
 end if;
 end Generate_Interrupt;

 3-13

PROCESSING INFORMATION

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_C;

 3-14

 PROCESSING INFORMATION

3.2.1.3 Package ImpDef.Annex_D
-- IMPDEFD.A
--
--!

package ImpDef.Annex_D is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This constant is the maximum storage size that can be specified
 -- for a task. A single task that has this size must be able to
 -- run. Ideally, this value is large enough that two tasks of this
 -- size cannot run at the same time. If the value is too small then
 -- test CXDC001 may take longer to run. See the test for further
 -- information.

 Maximum_Task_Storage_Size : constant := 16_000_000;
 -- ^^^^^^^^^^ --- MODIFY HERE AS
NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Indicates the type of processor on which the tests are running.
 -- Time_Slice indicates a uniprocessor with an operating system that
 -- simulates a multi-processor by using time slicing.

 type Processor_Type is (Uni_Processor, Time_Slice, Multi_Processor);

 Processor : constant Processor_Type := Time_Slice;
 -- ^^^^^^^^^^^ --- MODIFY HERE AS
NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_D;

 3-15

PROCESSING INFORMATION

3.3 WITHDRAWN TESTS

At the time of this validation testing, the following 24 tests were withdrawn
from the ACVC 2.1 test suite.

 B37312B BXC6A03 C390010 C392010 C392012 C42006A
 C48009A C760007 C760012 C761006 C761008 C761009
 C9A005A C9A008A CD20001 CXC3004 CXD2005 CXD4009
 CXD5002 CXDB005 CXDC001 CXG2022 E28002B LA1001F

 3-16

 APPENDIX A

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

A.1 Compilation System Options

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report.

Listing Options Meaning

 -lc Continuous source listing interspersed with messages.
 -lp Paginated source listing interspersed with messages.
 -lr Relevant-only source listing, (only source lines
 for which there are error or warning messages).
 -le Source listing only if there are errors.
 -lf filename Use 'filename' for listing, instead of default.
 -lx Cross reference listing
 -pl length Set page length of source listing file to length.
 -pw width Set page width of source listing file to width.
 -rl Record layout listing for all record types.
 -prl Record layout listing for packed record types only.

Message Options Meaning

 -m msg_kind Suppresses the display of any messages of msg_kind
 for the current invocation of the compiler.
 +m msg_kind Enables the display of any messages of msg_kind
 for the current invocation of the compiler.
 -mr msg_kind Suppresses the display of any messages of msg_kind
 for any recursive invocations of the compiler.
 +mr msg_kind Enables the display of any messages of msg_kind
 for any recursive invocations of the compiler.

 The valid values for msg_kind are a(all), d(implementation-dependent),
 e(error), i(information), w(warning) and r(redundant).

 By default, all messages except information and redundant messages are

 A-1

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

 displayed. For recursive invocations, no messages are displayed by
 default.
 For convenience, "-m a" will suppress all messages *except* errors.

Miscellaneous Options Meaning

 -a Analyzer only
 -asm Generate an assembler listing.
 -c Front end only
 -e count Only report the first 'count' errors, but keep
 compiling.
 -gc Generate codeview information
 -ga Generate adaview information
 -help or -h Display this help message.
 -s Suppress all checks bar stack checks.
 -S Suppress all checks
 -N Suppress certain numeric checks.
 -noxr Do not save xref info for the Browser.

Driver Options Meaning

 -0 Identify compiler version number
 -cf file Read options from specified file.
 -L <dir> Perform compilations on library in directory <dir>
 -mm <pages> Limit memory use to <pages> (1 page=4k bytes).
 -ne Don't re-exec adacomp process on failure.
 -nl Don't re-exec adacomp process on last file.
 -q Quiet mode -- suppress all inessential messages.
 -sr Enable automatic registration of source files

 A-2

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

A.2 Linker Options

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to linker documentation and not to this
report.

 Option Meaning

 -f Force linking, despite any prelinker errors.
 -g Build with codeview debugging symbols.
 -G Build with adaview debugging symbols.
 -help or -h Display this help message.
 -ke Keep intermediate files.
 -L <dir> Perform compilations on library in directory <dir>
 -ll option Pass "option" to linker.
 To pass multiword options, repeat "-ll", i.e.,
 to pass "-c foo" use "-ll -c -ll foo".
 -map file Output to file
 -na No autoregistration.
 -nc No recompilations.
 -nl No link (prelink, but do not call llink).
 -no No "object out of date" recompilations.
 -nse No uncalled subprogram elimination
 -p Link for profiling (NYI)
 -pru unit Use certain pragmas of "unit" to override main unit
 pragmas.
 -r Do "friendly" elaboration order.
 -rd Link to the runtime in a DLL
 -secstack n Specify secondary stack size
 -stack n Specify primary stack size
 -taskstack n Specify default task stack size
 -v Provide verbose output (including elaboration order)

Application type:

 -d Link as DLL
 -dos Link as DOS application
 -w Link as windows application
 -x Link as embedded application

 A-3

 APPENDIX B

 POINTS OF CONTACT

Ada Validation Facility

 Phil Brashear, AVF Manager
 Electronic Data Systems
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.
 Phone : (937) 237-4510
 Internet : brashp@dysmailpo.deisoh.msd.eds.com

Ada Validation Organization

 Mr. Clyde Roby
 Institute for Defense Analyses
 1801 N. Beauregard Street
 Alexandria VA 22311
 U.S.A.
 Phone : (703) 845-6666
 FAX : (703) 345-6848
 Internet : avo@sw-eng.falls-church.va.us

Ada Joint Program Office

 Joan McGarity
 Center for Software
 Defense Information Systems Agency
 5600 Columbia Pike
 Falls Church VA 22041
 U.S.A.
 Phone : (703) 681-2109
 Internet: mcgaritj@ncr.disa.mil

 B-1

POINTS OF CONTACT

For technical information about this Ada implementation, contact:

 Jim O'Leary
 Manager, Product Development
 ObjectAda for Windows
 Aonix
 200 Wheeler Rd.
 Burlington, MA, 01803
 Tel: (781)221-7316
 oleary@ma.aonix.com

For sales information about this Ada implementation, contact:

 Joe Reid
 Aonix
 200 Wheeler Rd.
 Burlington, MA, 01803
 Tel:(781)221-7353
 reid@ma.aonix.com

 B-2

 APPENDIX C

 REFERENCES

[Ada95] Reference Manual for the Ada Programming Language,
 ANSI/ISO/IEC 8652:1995

[Pro97] Ada Compiler Validation Procedures, Version 5.0,
 Ada Validation Organization and Ada Joint
 Program Office, March 1997

[UG97] The Ada Compiler Validation Capability Version 2.1
 User's Guide, Revision 1, SAIC and CTA, March 1997

 C-1

REFERENCES

 end of document

 (REMOVE THIS PAGE)

