
                                   ACAL Control Number: EDS19980904ACT03-2.1
                                                  DATE COMPLETED
                                                   BEFORE ON-SITE: 21 OCT 98
                                                   AFTER  ON-SITE: 01 DEC 98

                   Ada  Conformity Assessment Test Report
                     Certificate Number: A981103E2.1-043
                         Ada Core Technologies, Inc.
                   GNAT Professional Ada95, Version 4.12,
                                Digital Unix
           Digital AlphaStation 200 4/233 under Digital Unix 4.0D

                                   (Final)

                                Prepared By:
                    Ada Conformity Assessment Laboratory
                       EDS Conformance Testing Center
                         4646 Needmore Road, Bin 46
                               P.O. Box 24593
                           Dayton, OH  45424-0593
                                   U.S.A.

(c) Copyright 1998, Electronic Data Systems Corporation
This document is copyrighted.  It  may  be reproduced by any means and by any
person or entity, but only in its entirety.  Reproduction of any smaller part
of this report is prohibited.



                             TABLE OF CONTENTS

Preface

Validation Certificate

Declaration of Conformance

CHAPTER  1       INTRODUCTION

         1.1     USE OF THIS REPORT. . . . . . . . . . . . . . . . . 1-1
         1.2     TEST CLASSES. . . . . . . . . . . . . . . . . . . . 1-1
         1.3     DEFINITION OF TERMS . . . . . . . . . . . . . . . . 1-3

CHAPTER  2       IMPLEMENTATION DEPENDENCIES

         2.1     INAPPLICABLE TESTS. . . . . . . . . . . . . . . . . 2-1
         2.2     MODIFICATIONS . . . . . . . . . . . . . . . . . . . 2-3
         2.3     UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED  . . 2-4
                     NEEDS ANNEXES

CHAPTER  3       PROCESSING INFORMATION

         3.1     CONFORMITY ASSESSMENT PROCESS . . . . . . . . . . . 3-1
         3.2     MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES 3-2
         3.2.1     Macro Parameters. . . . . . . . . . . . . . . . . 3-2
         3.2.1.1     Package ImpDef. . . . . . . . . . . . . . . . . 3-5
         3.2.1.2     Package ImpDef.Annex_C. . . . . . . . . . . .  3-11
         3.2.1.3     Package ImpDef.Annex_D. . . . . . . . . . . .  3-14
         3.2.1.4     Package ImpDef.Annex_E. . . . . . . . . . . .  3-15
         3.2.1.5     Package ImpDef.Annex_G. . . . . . . . . . . .  3-16
         3.2.1.6     Package ImpDef.Annex_H. . . . . . . . . . . .  3-17
         3.3     WITHDRAWN TESTS . . . . . . . . . . . . . . . . .  3-19

APPENDIX A      COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

APPENDIX B      POINTS OF CONTACT

APPENDIX C      REFERENCES

                                     i



                                   ACAL Control Number: EDS19980904ACT03-2.1

PREFACE

This  report  documents  the conformity assessment of an Ada processor.  This
assessment  was  conducted  in  accordance with the Ada Conformity Assessment
Procedures of the Ada Conformity Assessment Laboratory (ACAL) named below and
with  the  Ada  Conformity Assessment Authority Operating Procedures, Version
1.3.  The Ada Conformity Assessment Test Suite (ACATS), Version 2.1, was used
for testing; The specific version identification is given below.

The  successful  completion  of  conformity  assessment  is the basis for the
issuance  of  a  certificate of conformity and for subsequent registration of
related  processors.   A  copy  of  the certificate A981103E2.1-043 which was
awarded  for  this assessment is presented on the following page.  Conformity
assessment does not ensure that a processor has no nonconformities to the Ada
standard  other  than those, if any, documented in this report.  The compiler
vendor  declares  that  the tested processor contains no deliberate deviation
from  the Ada standard; a copy of this Declaration of Conformity is presented
immediately after the certificate.

Base Test Suite Version        ACATS 2.1 (VCS label A2_1B)
                               (See Section 2.2 for details)
Location of Testing            Ada Core Technologies, Inc.
                               73 Fifth Ave., Suite 11B
                               New York NY 10003
Test Completion Date           3 November 1998

This  report  has been reviewed and approved by the signatories below.  These
organizations  attest  that,  to  the best of their knowledge, this report is
accurate  and  complete;  however,  they make no warrant, express or implied,
that omissions or errors have not occurred.

____________________________________      ___________________________________
Ada Conformity Assessment Laboratory      Ada Conformity Assessment Authority
Phil Brashear                             Randall Brukardt
EDS Conformance Testing Center            ACAA
4646 Needmore Road, Bin 46                P.O. Box 1512
P.O. Box 24593                            Madison WI  53701
Dayton OH  45424-0593                     U.S.A.
U.S.A.



                      (Insert copy of certificate here)



Results Summary for A981103E2.1-043

                          Specialized Needs Annexes

Note:  Tests  allocated  to  these annexes are processed only when the vendor
claims support.

 ------------------------------------------------------------------------
| SPECIALIZED              | Total  | With- | Passed | Inappli- | Unsup- |
| NEEDS ANNEXES            |        | Drawn |        | cable    | ported |
 --------------------------|--------|-------|--------|----------|--------
| C Systems                |        |       |        |          |        |
|   Programming            |      24|      2|      22|         0|       0|
| & required Section 13    |     161|      1|     160|         0|       0|
| (representation support) |     ---|    ---|     ---|       ---|     ---|
|                          |     185|      3|     182|         0|       0|
 ------------------------------------------------------------------------
| D Real-Time              |        |       |        |          |        |
|   Systems                |        |       |        |          |        |
| (which requires Annex C) |      58|      5|      47|         6|       0|
 ------------------------------------------------------------------------
| E Distributed            |        |       |        |          |        |
|   Systems                |      26|      0|      26|         0|       0|
 ------------------------------------------------------------------------
| F Information            |        |       |        |          |        |
|   Systems                |      21|      0|      21|         0|       0|
 ------------------------------------------------------------------------
|                          |        |       |        |          |        |
| G Numerics               |      29|      1|      28|         0|       0|
 ------------------------------------------------------------------------
| H Safety and             |        |       |        |          |        |
|   Security               |      30|      0|      30|         0|       0|
 ------------------------------------------------------------------------



DECLARATION OF CONFORMITY
______________________________________________________________________________

      Customer:                Ada Core Technologies, Inc.

      Ada Conformity Assessment Laboratory:  EDS Conformance Testing Center
                                             4646 Needmore Road, Bin 46
                                             P.O. Box 24593
                                             Dayton OH  45424-0593
                                             U.S.A.

      ACATS Version: 2.1

                              Ada Processor

      Ada Compiler Name and Version: GNAT Professional Ada95, Version 4.12,
                                     Digital Unix

      Host Computer System: Digital AlphaStation 200 4/233
                            Digital Unix 4.0D

      Target Computer System: Same as host

                                  Declaration

      I,  the undersigned,  declare that I have no knowledge of deliberate
      deviations  from  the Ada Language Standard  ANSI/ISO/IEC 8652:1995,
      FIPS PUB 119-1  other than  the omission of features  as documented
      in this Conformity Assessment Summary Report.

      ______________________________           _____________
      Customer Signature                         Date



                                 CHAPTER  1

                                INTRODUCTION

The  Ada  processor  described  above  was  tested in accordance with the Ada
Conformity  Assessment  Procedures  of  the  ACAL and with Version 1.3 of the
Operating  Procedures  of  the  ACAA [Pro98].  Testing was accomplished using
Version  2.1  of the Ada Conformity Assessment Test Suite (ACATS), also known
as  the  Ada  Compiler  Validation  Capability  (ACVC).  The ACATS checks the
conformity of an Ada processor to the Ada Standard [Ada95].

This  Ada  Conformity  Assessment Test Report (ACATR) gives an account of the
testing  of this Ada processor.  For any technical terms used in this report,
the  reader  is referred to [Pro98].  A detailed description of the ACATS may
be found in the ACVC User's Guide [UG97].

1.1  USE OF THIS REPORT

Consistent  with  the  national laws of the originating country, the ACAL and
ACAA  may make full and free public disclosure of this report.  In the United
States,  this is provided in accordance with the "Freedom of Information Act"
(5  U.S.C.   #552).   Certified  status  is  awarded  only  to  the processor
identified in this report.  Copies of this report are available to the public
from the ACAL that performed this conformity assessment.

Questions regarding this report or the test results should be directed to the
ACAL  which  performed  this  conformity  assessment or to the Ada Conformity
Assessment Authority.  For all points of contact, see Appendix B.

1.2  TEST CLASSES

Compliance  of  Ada  processors  is  tested by means of the ACATS.  The ACATS
contains  a  collection of test programs structured into six test classes: A,
B,  C,  D, E, and L.  The first letter of a test name identifies the class to
which  it  belongs.   Class A, C, D, and E tests are executable.  Class B and
most  Class  L  tests are expected to produce errors at compile time and link
time, respectively.

                                    1-1



INTRODUCTION

The  executable  tests  are  written  in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed.   Three Ada library units, the packages REPORT and SPPRT13, and the
procedure  CHECK_FILE  are  used  for  this purpose.  The package REPORT also
provides   a   set  of  identity  functions  used  to  defeat  some  compiler
optimizations  allowed  by  the  Ada  Standard  that  would circumvent a test
objective.   The  package  SPPRT13 contains constants of type SYSTEM.ADDRESS.
These  constants  are used by selected Section 13 tests and by isolated tests
for  other  sections.  The procedure CHECK_FILE is used to check the contents
of  text  files  written  by  some  of the Class C tests for the Input-Output
features  of the Ada Standard, defined in Annex A of [Ada 95].  The operation
of  REPORT  and CHECK_FILE is checked by a set of executable tests.  If these
units are not operating correctly, conformity testing is discontinued.

Class  B tests check that a compiler detects illegal language usage.  Class B
tests  are  not  executable.   Each  test  in  this class is compiled and the
resulting  compilation  listing  is examined to verify that all violations of
the  Ada  Standard are detected.  Some of the Class B tests contain legal Ada
code  which  must  not  be flagged illegal by the compiler.  This behavior is
also verified.

Class  L tests check that an Ada processor correctly detects violation of the
Ada  Standard involving multiple, separately compiled units.  In most Class L
tests, errors are expected at link time, and execution must not begin.  Other
L tests may execute and report the appropriate result.

For  some  tests of the ACATS, certain implementation-specific values must be
supplied.   Two  insertion methods for the implementation-specific values are
used:  a macro substitution on the source file level of the test, and linking
of  a  package that contains the implementation-specific values.  Details are
described  in  [UG97].   A  list of the values used for this processor, along
with  the  specification  and body of the package (and children applicable to
any of Specialized Needs Annexes being tested) are provided in Section 3.2 of
this report.

In  addition to these anticipated test modifications, changes may be required
to remove unforeseen conflicts between the tests and implementation-dependent
characteristics.  The modifications required for this processor are described
in Section 2.2.

For  the conformity assessment of each Ada processor, a customized test suite
is  produced  by  the  ACAL.   This  customization  consists  of  making  the
modifications  described in the preceding paragraph, removing withdrawn tests
(see Section 2.1), and possibly removing some inapplicable tests (see Section
2.1 and [UG97]).

                                    1-2



                                                                INTRODUCTION

1.3  DEFINITION OF TERMS

Acceptable      A result that is  explicitly allowed by the  grading criteria
result          of the test program for a grade of passed or inapplicable.

Ada compiler    The software and any needed hardware that have to be added to
                a   given   host   and   target   computer  system  to  allow
                transformation  of  Ada  programs  into  executable  form and
                execution thereof.

Ada Compiler    The  means  of   checking   conformity  of   Ada  processors,
Validation      consisting of tests,  support programs, and a  User's  Guide.
Capability      Also referred to as the Ada Conformity Assessment Test Suite.

Ada Conformity  Alternate name for the ACVC (which see).
Assessment
Test Suite
(ACATS)

Ada Conformity  An organization  which carries out the procedures required to
Assessment      assess the conformity of an Ada processor.
Laboratory

Ada Conformity  The  organization that  provides  coordination and  technical
Assessment      guidance for the Ada Conformity Assessment Laboratories.
Authority
(ACAA)

Ada             An Ada processor.

Certified       (Also "certified as conforming")  The  status  granted  to an
Status          Ada  processor  by  the award of an Ada Conformity Assessment
                Certificate.

Computer        A functional unit,  consisting of one or  more computers  and
System          associated software, that uses common storage for all or part
                of  a  program and also for all or part of the data necessary
                for  the  execution  of the program; executes user-wriiten or
                user-designated   programs;   performs  user-designated  data
                manipulation,   including  arithmetic  operations  and  logic
                operations;   and  that  can  execute  programs  that  modify
                themselves  during  execution.   A  computer  system may be a
                stand-alone  unit  or  may consist of several inter-connected
                units.

Conformity      Fulfillment   by   a  product,  process  or  service  of  all
                requirements specified.

Conformity      The process of checking the  conformity  of an  Ada processor
Assessment      to the Ada programming language and of issing  a  certificate
                for that processor.

Customer        An   individual  or  corporate  entity  who  enters  into  an

                                    1-3



INTRODUCTION

                agreement   with  an  ACAL  which  specifies  the  terms  and
                conditions for ACAL services (of any kind) to be performed.

Declaration     A formal statement  from a customer  assuring that conformity
of Conformance  is realized  or is attainable  on the Ada processor for which
                certified status is realized.

Foundation      An Ada package used by multiple tests.   Foundation units are
Unit            designed to be reusable.   A valid foundation unit must be in
(Foundation     the Ada library  for  those tests  that are dependent  on the
Code)           foundation unit.

Host Computer   A computer  system where Ada source programs  are transformed
System          into executable form.

Inapplicable    A test  that contains  one or more  test objectives  found to
Test            be irrelevant for the given Ada processor.

ISO             International Organization for Standardization.

Operating       Software that  controls the  execution  of programs  and that
System          provides  services  such as resource  allocation, scheduling,
                input/output control, and data management.

Specialized     One of annexes  C through  H of [Ada95].   Testing  of one or
Needs Annex     more  specialized  needs annexes is optional, and results for
                each tested annex are summarized in this report.

Target          A computer system  where the  executable form of Ada programs
Computer        are executed.
System

Unsupported     A test for  a language  feature  that is  not  required to be
Feature Test    supported,  because it is based upon  a requirement stated in
                an Ada 95 Specialized Needs Annex.

Withdrawn Test  A test  found  to be  incorrect  and not  used in  conformity
                testing.   A  test may be incorrect because it has an invalid
                test objective, fails to meet its test objective, or contains
                erroneous or illegal use of the Ada programming language.

                                    1-4



                                 CHAPTER  2

                         IMPLEMENTATION DEPENDENCIES

2.1  INAPPLICABLE TESTS

A  test  is  inapplicable if it contains test objectives which are irrelevant
for  a  given  Ada  processor.   Reasons  for a test's inapplicability may be
supported  by  documents  issued  by  the  ISO  known as Ada Commentaries and
commonly  referenced  in  the  format  AI95-ddddd.   For  this processor, the
following tests were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

     C45322A,  C45523A, and C45622A check that the proper exception is raised
     if  MACHINE_OVERFLOWS  is TRUE and the results of various floating-point
     operations  lie  outside the range of the base type; for this processor,
     MACHINE_OVERFLOWS is FALSE.

     C4A012B    checks   that   the   proper   exception   is   raised   when
     FLOAT'MACHINE_OVERFLOWS  is  TRUE  for  negative powers of 0.0; for this
     processor, FLOAT'MACHINE_OVERFLOWS is FALSE.

     C96005B  uses  values  of type DURATION's base type that are outside the
     range of type DURATION; for this processor, the ranges are the same.

     EA3004G  checks  whether  Pragma  Inline is obeyed for a function called
     from  within  a  package  specification.   This  processor does not obey
     Pragma Inline in this circumstance.

     CD1009C  checks  whether  a length clause can specify a non-default size
     for a floating-point type; this processor does not support such sizes.

                                    2-1



IMPLEMENTATION DEPENDENCIES

     The  tests  listed in the following table check that USE_ERROR is raised
     if the given file operations are not supported for the given combination
     of mode and access method; this processor supports these operations.

           Test    File Operation  Mode      File Access Method
        --------------------------------------------------------
         CE2102D     CREATE      IN_FILE      SEQUENTIAL_IO
         CE2102E     CREATE      OUT_FILE     SEQUENTIAL_IO
         CE2102F     CREATE      INOUT_FILE   DIRECT_IO
         CE2102I     CREATE      IN_FILE      DIRECT_IO
         CE2102J     CREATE      OUT_FILE     DIRECT_IO
         CE2102N     OPEN        IN_FILE      SEQUENTIAL_IO
         CE2102O     RESET       IN_FILE      SEQUENTIAL_IO
         CE2102P     OPEN        OUT_FILE     SEQUENTIAL_IO
         CE2102Q     RESET       OUT_FILE     SEQUENTIAL_IO
         CE2102R     OPEN        INOUT_FILE   DIRECT_IO
         CE2102S     RESET       INOUT_FILE   DIRECT_IO
         CE2102T     OPEN        IN_FILE      DIRECT_IO
         CE2102U     RESET       IN_FILE      DIRECT_IO
         CE2102V     OPEN        OUT_FILE     DIRECT_IO
         CE2102W     RESET       OUT_FILE     DIRECT_IO
         CE3102E     CREATE      IN_FILE      TEXT_IO
         CE3102F     RESET       Any Mode     TEXT_IO
         CE3102G     DELETE      --------     TEXT_IO
         CE3102I     CREATE      OUT_FILE     TEXT_IO
         CE3102J     OPEN        IN_FILE      TEXT_IO
         CE3102K     OPEN        OUT_FILE     TEXT_IO.

     CE2203A  checks  that  WRITE  raises  USE_ERROR  if  the  capacity of an
     external  sequential  file  is  exceeded; this processor cannot restrict
     file capacity.

     CE2403A  checks  that  WRITE  raises  USE_ERROR  if  the  capacity of an
     external  direct  file  is exceeded; this processor cannot restrict file
     capacity.

     CE3115A checks operations on text files when multiple internal files are
     associated  with  the  same  external  file and one or more are open for
     writing; USE_ERROR is raised when this association is attempted.

     CE3304A  checks that SET_LINE_LENGTH and SET_PAGE_LENGTH raise USE_ERROR
     if  they specify an inappropriate value for the external file; there are
     no inappropriate values for this processor.

     CE3413B  checks that PAGE raises LAYOUT_ERROR when the value of the page
     number  exceeds  COUNT'LAST; for this processor, the value of COUNT'LAST
     is   greater   than  150000,  making  the  checking  of  this  objective
     impractical.

     CXB4009  depends  on  the  availability  of  a  COBOL compiler; the test
     environment did not include a Cobol compiler.

                                    2-2



                                                 IMPLEMENTATION DEPENDENCIES

     CXD2007,  CXDB001..4  (4  tests), and LXD7008 check the functionality of
     Asynchronous Task Control.  This processor does not support Asynchronous
     Task Control, and the tests are rejected at compile time.

2.2  MODIFICATIONS

In  order  to comply with the test objective it may be required to modify the
test  source code, the test processing method, or the test evaluation method.
Modifications  are  allowable  because  at  the  time of test writing not all
possible  execution  environments  of  the  test  and the capabilities of the
compiler could be foreseen.  Possible kinds of modification are:

   o Test Modification: The source code of the test is changed.
     Examples  for  test  modifications  are  the  insertion of a pragma, the
     insertion  of a representation clause, or the splitting of a B-test into
     several  individual  tests, if the compiler does not detect all intended
     errors in the original test.

   o Processing Modification:  The processing  of the test  by the Ada
     processor for
     conformity assessment is changed.
     Examples  for  processing modification are the change of the compilation
     order  for  a  test  that  consists  of  multiple  compilations  or  the
     additional compilation of a specific support unit in the library.

   o Evaluation Modification: The evaluation of a test result is changed.
     An  example  for  evaluation modification is the grading of a test other
     than  the  output from REPORT.RESULT indicates.  This may be required if
     the  test  makes  assumptions about implementation features that are not
     supported by the processor (e.g., the implementation of a file system on
     a bare target machine).

All modifications have been directed or approved by the ACAA after consulting
the ACAL and the customer on the technical justification of the modification.
All  of  the required test modifications from the "ACATS Modifications List",
Version 2.1B were used along with any modifications detailed below.

Modifications were required for 58 tests.

     The  following  29  tests were split into two or more tests because this
     processor  did  not report the violations of the Ada Standard in the way
     expected by the original tests.

          B32201A     B36201A     B393002     B41201A     B54A20A
          B62001B     B67001A     B67001B     B67001C     B67001D
          B74304A     B74304B     B74304C     B83E01C     B83E01D
          B83E01E     B87B26A     B940003     B951001     B952001
          BA11005     BA1101A     BA1101B     BA12008     BC3604A
          BC3607A     BC51015     BC51016     BC51017

                                    2-3



IMPLEMENTATION DEPENDENCIES

     The   following   28   allowable  test  modifications  from  the  "ACATS
     Modifications List", Version 2.1B were used.

          C3A2A02     B490001     C760009     C760010     CD30002
          CD30005     CXB3008     CXB4009     CXD1008     CXD2004
          CXD6002     CXE5002     CXE5003     CXG2002     CXG2012
          LXH4001     LXH4002     LXH4003     LXH4004     LXH4005
          LXH4006     LXH4007     LXH4008     LXH4009     LXH4010
          LXH4011     LXH4012

     CXG2014,  as  directed by the ACAA, was graded passed with the following
     code modification:

         comment out line 345 (the call to Subtraction_Error_Test)

     By  effectively  deleting  this  one line, the flawed subprogram will be
     removed from execution, and the other, valid checks can be made.

2.3  UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED NEEDS ANNEXES

     As  allowed  by  [Ada95],  a  processor  need  not  support  any  of the
     capabilities  specified  by a Specialized Needs Annex, or it may support
     some  or  all  of  them.  For conformity assessment testing, each set of
     tests  for  a  particular Annex is processed only upon customer request,
     but  is  processed  in  full  (even  if  the Ada processor provides only
     partial  support).   As  required  by  [Ada95], the failure to support a
     requirement  of  a  Specialized  Needs  Annex  must  be  indicated  by a
     compile-time  rejection or by raising a run-time exception.  When a test
     for  a Specialized Needs Annex thus indicates non-support, the result is
     graded  "unsupported"  (rather than "inapplicable").  However, if such a
     test  is accepted and reports FAILED, the result is graded "failed", and
     is considered evidence of non-conformity.

     All  of  the  Specialized  Needs  Annexes  were  processed  during  this
     conformity assessment testing.

     The  following  tests  for  Annex  C,  Systems  Programming, were graded
     "unsupported": none.

     The  following  tests  for  Annex  D,  Real-Time  Systems,  were  graded
     "unsupported": none.

     The  following  tests  for  Annex  E,  Distributed  Systems, were graded
     "unsupported": none.

     The  following  tests  for  Annex  F,  Information  Systems, were graded
     "unsupported": none.

     The  following  tests  for Annex G, Numerics, were graded "unsupported":
     none.

                                    2-4



                                                 IMPLEMENTATION DEPENDENCIES

     The  following  tests  for  Annex  H,  Safety  and Security, were graded
     "unsupported": none.

                                    2-5



                                 CHAPTER  3

                           PROCESSING INFORMATION

3.1  CONFORMITY ASSESSMENT PROCESS

A  full evaluation of the customer's self-tested results was conducted at the
ACAL's site.

Witness    testing   of   this   Ada   processor   was   conducted   at   the
customer-designated site by a representative of the ACAL.

A  floppy diskette containing the customized test suite (see Section 1.3) was
taken on-site by the ACAL representative for processing.  The contents of the
floppy diskette were loaded directly onto the host computer.

After  the  test  files  were  loaded onto the host computer, the full set of
tests was processed by the Ada processor.

The tests were compiled, linked, and executed on the host computer system.

Testing  was  performed  using  command  scripts provided by the customer and
reviewed  by  the ACAL representative.  See Appendix A for a complete listing
of  the processing options for this processor.  Appendix A also indicates the
default options.

The following explicit option settings were used during witness testing:

For B tests:

  gcc -c -I$acvc_lib_dir
           -gnatE -gnato -gnatf -gnatvl -gnatq -gnatws -gnatd2 -mieee -gnatd7

For executable tests:

  gcc -c -I$acvc_lib_dir -O0 -gnatE -gnato -gnatv -gnatws -mieee -gnatd7
  gnatmake $main_name
         -I$acvc_lib_dir -O0 -gnatE -gnato -gnatv -gnatws -mieee -gnatd7

                                    3-1



PROCESSING INFORMATION

For L tests:

  gcc -c -I$acvc_lib_dir -O0 -gnatE -gnato -gnatv -gnatws -mieee -gnatd7
  gnatmake $main_name
         -I$acvc_lib_dir -O0 -gnatE -gnato -gnatv -gnatws -mieee -gnatd7

Test  output,  compiler  and  linker  listings, and job logs were captured on
floppy  diskette  and archived at the ACAL.  The listings examined on-site by
the ACAL representative were also archived.

3.2  MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

This  section  contains  the macro parameters used for customizing the ACATS.
The  meaning  and  purpose  of these parameters are explained in [UG97].  The
parameter  values  are  presented  in  two tables.  The first table lists the
values  that  are defined in terms of the maximum input-line length, which is
the value for $MAX_IN_LEN, also listed here.  These values are expressed in a
symbolic notation, using placeholders as appropriate.

3.2.1  Macro Parameters

Macro Parameter                  Macro Value
------------------------------------------------------------------------------

$MAX_IN_LEN                     200

$BIG_ID1                        AAA ... A1  (200 characters)

$BIG_ID2                        AAA ... A2  (200 characters)

$BIG_ID3                        AAA ... A3A ... A  (200 characters)

$BIG_ID4                        AAA ... A4A ... A  (200 characters)

$BIG_STRING1                    "AAA ... A"  (200/2 characters)

$BIG_STRING2                    "AAA ... A1"  ((200/2)-1 characters)

$BLANKS                         "    ...  "  (200-20 blanks)

$MAX_STRING_LITERAL             "AAA ... A"  (200 characters)

------------------------------------------------------------------------------

$ACC_SIZE                       64

$ALIGNMENT                      4

$COUNT_LAST                     2147483647

$ENTRY_ADDRESS                  ENTRY_ADDR

                                    3-2



                                                      PROCESSING INFORMATION

$ENTRY_ADDRESS1                 ENTRY_ADDR1

$ENTRY_ADDRESS2                 ENTRY_ADDR2

$FIELD_LAST                     255

$FORM_STRING                    ""

$FORM_STRING2                   "CANNOT_RESTRICT_FILE_CAPACITY"

$GREATER_THAN_DURATION          86_000.0

$ILLEGAL_EXTERNAL_FILE_NAME1    /NODIRECTORY/FILENAME

$ILLEGAL_EXTERNAL_FILE_NAME2    /@@/@@/@@\@@\@@\@@

$INAPPROPRIATE_LINE_LENGTH      -1

$INAPPROPRIATE_PAGE_LENGTH      -1

$INTEGER_FIRST                  -2147483648

$INTEGER_LAST                   2147483647

$LESS_THAN_DURATION             -86_400.0

$MACHINE_CODE_STATEMENT         Asm_Insn'(Asm ("nop"));

$MAX_INT                        9223372036854775807

$MIN_INT                        -9223372036854775808

$NAME                           LONG_LONG_INTEGER

$NAME_SPECIFICATION1            /tiber.a/acvc/tiber/acvc_21/work/X2120A

$NAME_SPECIFICATION2            /tiber.a/acvc/tiber/acvc_21/work/X2120B

$NAME_SPECIFICATION3            /tiber.a/acvc/tiber/acvc_21/work/X3119A

$OPTIONAL_DISC                  NO_SUCH_MACHINE_CODE_DISC

$RECORD_DEFINITION              RECORD ASM : STRING (1..4); END RECORD;

$RECORD_NAME                    Asm_Insn

$TASK_SIZE                      64

$TASK_STORAGE_SIZE              1024

$VARIABLE_ADDRESS               VAR_ADDR

$VARIABLE_ADDRESS1              VAR_ADDR1

                                    3-3



PROCESSING INFORMATION

$VARIABLE_ADDRESS2              VAR_ADDR2

                                    3-4



                                                      PROCESSING INFORMATION

Package ImpDef and Its Children

The  package  ImpDef  is  used  by  several  tests of core language features.
Before   use  in  testing,  this  package  is  modified  to  specify  certain
implementation-defined  features.   In  addition,  package ImpDef has a child
package  for  each  Specialized  Needs  Annex, each of which may need similar
modifications.   The  child  packages are independent of one another, and are
used only by tests for their respective annexes.

This  section  presents  the  package  ImpDef  and each of the relevant child
packages  as  they  were  modified  for  this  conformity assessment.  In the
interests  of  simplifying  this  ACATR, the header comment block was removed
from each of the package files.

3.2.1.1  Package ImpDef
-- IMPDEF.A
--
--!

with Report;
with Ada.Text_IO;
with System.Storage_Elements;

package ImpDef is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following boolean constants indicate whether this validation will
   -- include any of annexes C-H. The values of these booleans affect the
   -- behavior of the test result reporting software.
   --
   --    True  means the associated annex IS included in the validation.
   --    False means the associated annex is NOT included.

   Validating_Annex_C : constant Boolean := True;
   --                                       ^^^^^ --- MODIFY HERE AS NEEDED

   Validating_Annex_D : constant Boolean := True;
   --                                       ^^^^^ --- MODIFY HERE AS NEEDED

   Validating_Annex_E : constant Boolean := True;
   --                                       ^^^^^ --- MODIFY HERE AS NEEDED

   Validating_Annex_F : constant Boolean := True;
   --                                       ^^^^^ --- MODIFY HERE AS NEEDED

   Validating_Annex_G : constant Boolean := True;
   --                                       ^^^^^ --- MODIFY HERE AS NEEDED

   Validating_Annex_H : constant Boolean := True;
   --                                       ^^^^^ --- MODIFY HERE AS NEEDED

                                    3-5



PROCESSING INFORMATION

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- This is the minimum time required to allow another task to get
   -- control.  It is expected that the task is on the Ready queue.
   -- A duration of 0.0 would normally be sufficient but some number
   -- greater than that is expected.

   Minimum_Task_Switch : constant Duration := 0.1;
   --                                         ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- This is the time required to activate another task and allow it
   -- to run to its first accept statement.  We are considering a simple task
   -- with very few Ada statements before the accept.  An implementation is
   -- free to specify a delay of several seconds, or even minutes if need be.
   -- The main effect of specifying a longer delay than necessary will be an
   -- extension of the time needed to run the associated tests.

   Switch_To_New_Task : constant Duration := 1.0;
   --                                        ^^^ -- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- This is the time which will clear the queues of other tasks
   -- waiting to run.  It is expected that this will be about five
   -- times greater than Switch_To_New_Task.

   Clear_Ready_Queue : constant Duration := 5.0;
   --                                       ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- Some implementations will boot with the time set to 1901/1/1/0.0
   -- When a delay of Delay_For_Time_Past is given, the implementation
   -- guarantees that a subsequent call to Ada.Calendar.Time_Of(1901,1,1)
   -- will yield a time that has already passed (for example, when used in
   -- a delay_until statement).

   Delay_For_Time_Past : constant Duration := 0.1;
   --                                         ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- Minimum time interval between calls to the time dependent Reset
   -- procedures in Float_Random and Discrete_Random packages that is
   -- guaranteed to initiate different sequences.  See RM A.5.2(45).

   Time_Dependent_Reset : constant Duration := 0.3;
   --                                          ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- Test CXA5013 will loop, trying to generate the required sequence

                                    3-6



                                                      PROCESSING INFORMATION

   -- of random numbers.  If the RNG is faulty, the required sequence
   -- will never be generated.  Delay_Per_Random_Test is a time-out value
   -- which allows the test to run for a period of time after which the
   -- test is failed if the required sequence has not been produced.
   -- This value should be the time allowed for the test to run before it
   -- times out.  It should be long enough to allow multiple (independent)
   -- runs of the testing code, each generating up to 1000 random
   -- numbers.

   Delay_Per_Random_Test : constant Duration := 1.0;
   --                                           ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The time required to execute this procedure must be greater than the
   -- time slice unit on implementations which use time slicing.  For
   -- implementations which do not use time slicing the body can be null.

   procedure Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- This constant must not depict a random number generator state value.
   -- Using this string in a call to function Value from either the
   -- Discrete_Random or Float_Random packages will result in
   -- Constraint_Error (expected result in test CXA5012).

   Non_State_String : constant String := "By No Means A State";
   --           MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- This string constant must be a legal external tag value as used by
   -- CD10001 for the type Some_Tagged_Type in the representation
   -- specification for the value of 'External_Tag.

   External_Tag_Value : constant String := "implementation_defined";
   --             MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following address constant must be a valid address to locate
   -- the C program CD30005_1.  It is shown here as a named number;
   -- the implementation may choose to type the constant as appropriate.

   function Cd30005_Proc (X : Integer) return Integer;
   pragma Import (C, Cd30005_Proc, "_cd30005_1");

   pragma Linker_Options ("../cd300051.o");

   CD30005_1_Foreign_Address : constant System.Address:= Cd30005_Proc'Address;

   -- CD30005_1_Foreign_Address : constant System.Address:=

                                    3-7



PROCESSING INFORMATION

   --          System.Storage_Elements.To_Address ( 16#0000_0000# )
   --               --MODIFY HERE AS REQUIRED --- ^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following string constant must be the external name resulting
   -- from the C compilation of CD30005_1.  The string will be used as an
   -- argument to pragma Import.

   CD30005_1_External_Name : constant String := "_cd30005_1";
   --                  MODIFY HERE AS NEEDED --- ^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following constants should represent the largest default alignment
   -- value and the largest alignment value supported by the linker.
   -- See RM 13.3(35).

   Max_Default_Alignment : constant := Standard'Maximum_Alignment;
   --                                  ^ --- MODIFY HERE AS NEEDED

   Max_Linker_Alignment  : constant := Standard'Maximum_Alignment;
   --                                  ^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following string constants must be the external names resulting
   -- from the C compilation of CXB30130.C and CXB30131.C.  The strings
   -- will be used as arguments to pragma Import.

   CXB30130_External_Name : constant String := "CXB30130";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

   CXB30131_External_Name : constant String := "CXB30131";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following string constants must be the external names resulting
   -- from the COBOL compilation of CXB40090.CBL, CXB40091.CBL, and
   -- CXB40092.CBL.  The strings will be used as arguments to pragma Import.

   CXB40090_External_Name : constant String := "cxb40090";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

   CXB40091_External_Name : constant String := "cxb40091";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

   CXB40092_External_Name : constant String := "cxb40092";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following string constants must be the external names resulting

                                    3-8



                                                      PROCESSING INFORMATION

   -- from the Fortran compilation of CXB50040.FTN, CXB50041.FTN,
   -- CXB50050.FTN, and CXB50051.FTN.
   --
   -- The strings will be used as arguments to pragma Import.
   --
   -- Note that the use of these four string constants will be split between
   -- two tests, CXB5004 and CXB5005.

   CXB50040_External_Name : constant String := "args_";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

   CXB50041_External_Name : constant String := "tax_";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

   CXB50050_External_Name : constant String := "align_";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

   CXB50051_External_Name : constant String := "modify_";
   --                 MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following constants have been defined for use with the
   -- representation clause in FXACA00 of type Sales_Record_Type.
   --
   -- Char_Bits should be an integer at least as large as the number
   -- of bits needed to hold a character in an array.
   -- A value of 6 * Char_Bits will be used in a representation clause
   -- to reserve space for a six character string.
   --
   -- Next_Storage_Slot should indicate the next storage unit in the record
   -- representation clause that does not overlap the storage designated for
   -- the six character string.

   Char_Bits         : constant := 8;
   --     MODIFY HERE AS NEEDED ---^

   Next_Storage_Slot : constant := 6;
   --     MODIFY HERE AS NEEDED ---^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following string constant must be the path name for the .AW
   -- files that will be processed by the Wide Character processor to
   -- create the C250001 and C250002 tests.  The Wide Character processor
   -- will expect to find the files to process at this location.

   Test_Path_Root : constant String :=
     "/data/ftp/public/AdaIC/testing/acvc/95acvc/";
   -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ --- MODIFY HERE AS NEEDED

   -- The following two strings must not be modified unless the .AW file
   -- names have been changed.  The Wide Character processor will use
   -- these strings to find the .AW files used in creating the C250001

                                    3-9



PROCESSING INFORMATION

   -- and C250002 tests.

  Wide_Character_Test : constant String := Test_Path_Root & "c250001";
  Upper_Latin_Test    : constant String := Test_Path_Root & "c250002";

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The following instance of Integer_IO or Modular_IO must be supplied
   -- in order for test CD72A02 to compile correctly.
   -- Depending on the choice of base type used for the type
   -- System.Storage_Elements.Integer_Address; one of the two instances will
   -- be correct.  Comment out the incorrect instance.

   --M package Address_Value_IO is
   --M   new Ada.Text_IO.Integer_IO(System.Storage_Elements.Integer_Address);

   package Address_Value_IO is
         new Ada.Text_IO.Modular_IO(System.Storage_Elements.Integer_Address);

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef;

     --==================================================================--

package body ImpDef is

   -- NOTE: These are example bodies.  It is expected that implementors
   --       will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The time required to execute this procedure must be greater than the
   -- time slice unit on implementations which use time slicing.  For
   -- implementations which do not use time slicing the body can be null.

   Procedure Exceed_Time_Slice is
      T : Integer := 0;
      Loop_Max : constant Integer := 4_000;
   begin
      for I in 1..Loop_Max loop
         T := Report.Ident_Int (1) * Report.Ident_Int (2);
      end loop;
   end Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef;

                                   3-10



                                                      PROCESSING INFORMATION

3.2.1.2  Package ImpDef.Annex_C
-- Version of IMPDEFC.A modified for ACT interrupt support
--
-- IMPDEFC.A
--
--!

with Ada.Interrupts.Names;

package ImpDef.Annex_C is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- Interrupt_To_Generate should identify a non-reserved interrupt
   -- that can be predictably generated within a reasonable time interval
   -- (as specified by the constant Wait_For_Interrupt) during testing.

   Interrupt_To_Generate: constant Ada.Interrupts.Interrupt_ID :=
      Ada.Interrupts.Names.SIGPIPE;  -- to allow trivial compilation
   -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- Wait_For_Interrupt should specify the reasonable time interval during
   -- which the interrupt identified by Interrupt_To_Generate can be
   -- expected to be generated.

   Wait_For_Interrupt : constant := 0.1;
   --                               ^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The procedure Enable_Interrupts should enable interrupts, if this
   -- is required by the implementation. [See additional notes on this
   -- procedure in the package body.]

   procedure Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The procedure Generate_Interrupt should generate the interrupt
   -- identified by Interrupt_To_Generate within the time interval
   -- specified by Wait_For_Interrupt. [See additional notes on this
   -- procedure in the package body.]

   procedure Generate_Interrupt;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_C;

                                   3-11



PROCESSING INFORMATION

     --==================================================================--

package body ImpDef.Annex_C is

   -- NOTE: These are example bodies.  It is expected that implementors
   --       will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The procedure Enable_Interrupts should enable interrupts, if this
   -- is required by the implementation.
   --
   -- The default body is null, since it is expected that most implementations
   -- will not need to perform this step.
   --
   -- Note that Enable_Interrupts will be called only once per test.

   procedure Enable_Interrupts is
   begin
      null;

   -- ^^^^^^^^^^^^^^^^^^^^  MODIFY THIS BODY AS NEEDED  ^^^^^^^^^^^^^^^^^^^^

   end Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The procedure Generate_Interrupt should generate the interrupt
   -- identified by Interrupt_To_Generate within the time interval
   -- specified by Wait_For_Interrupt.
   --
   -- The default body assumes that an interrupt will be generated by some
   -- physical act during testing. While this approach is acceptable, the
   -- interrupt should ideally be generated by appropriate code in the
   -- procedure body.
   --
   -- Note that Generate_Interrupt may be called multiple times by a single
   -- test. The code used to implement this procedure should account for this
   -- possibility.

   procedure Generate_Interrupt is

      procedure c_kill (pid : Integer; sig : in Ada.Interrupts.Interrupt_ID);
      pragma Import (C, c_kill, "kill");

      function c_getpid return Integer;
      pragma Import (C, c_getpid, "getpid");

   begin
      Report.Comment (". >>>>> GENERATE THE INTERRUPT NOW <<<<< ");
      c_kill (c_getpid, Interrupt_To_Generate);

                                   3-12



                                                      PROCESSING INFORMATION

   -- ^^^^^^^^^^^^^^^^^^^^  MODIFY THIS BODY AS NEEDED  ^^^^^^^^^^^^^^^^^^^^

   end Generate_Interrupt;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_C;

                                   3-13



PROCESSING INFORMATION

3.2.1.3  Package ImpDef.Annex_D
-- IMPDEFD.A
--
--!

package ImpDef.Annex_D is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- This constant is the maximum storage size that can be specified
   -- for a task.  A single task that has this size must be able to
   -- run.  Ideally, this value is large enough that two tasks of this
   -- size cannot run at the same time.  If the value is too small then
   -- test CXDC001 may take longer to run.  See the test for further
   -- information.

   Maximum_Task_Storage_Size : constant := 16_000_000;
   --                                      ^^^^^^^^^^ --- MODIFY HERE AS
NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- Indicates the type of processor on which the tests are running.
   -- Time_Slice indicates a uniprocessor with an operating system that
   -- simulates a multi-processor by using time slicing.

   type Processor_Type is (Uni_Processor, Time_Slice, Multi_Processor);

   Processor : constant Processor_Type := Uni_Processor;
   --                                     ^^^^^^^^^^^ --- MODIFY HERE AS
NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_D;



                                   3-14



                                                      PROCESSING INFORMATION

3.2.1.4  Package ImpDef.Annex_E
-- IMPDEFE.A
--
--!

package ImpDef.Annex_E is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- The Max_RPC_Call_Time value is the longest time a test needs to wait for
   -- an RPC to complete.  Included in this time is the time for the called
   -- procedure to make a task entry call where the task is ready to accept
   -- the call.

   Max_RPC_Call_Time : constant Duration := 2.0;
   --                                       ^^^  --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_E;

                                   3-15



PROCESSING INFORMATION

3.2.1.5  Package ImpDef.Annex_G
-- IMPDEFG.A
--
--!

package ImpDef.Annex_G is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   -- This function must return a "negative zero" value for implementations
   -- for which Float'Signed_Zeros is True.

   function Negative_Zero return Float;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_G;

     --==================================================================--

package body ImpDef.Annex_G is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

   --  This function must return a negative zero value for implementations
   --  for which Float'Signed_Zeros is True.
   --  We generate the smallest normalized negative number, and divide by a
   --  few powers of two to obtain a number whose absolute value equals zero
   --  but whose sign is negative.

   function Negative_Zero return Float is
      negz : float := -1.0 *
         float (float'Machine_Radix)
            ** ( Float'Machine_Emin - Float'Machine_Mantissa);
   begin
      return negz / 8.0;
   end Negative_Zero;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_G;

                                   3-16



                                                      PROCESSING INFORMATION

3.2.1.6  Package ImpDef.Annex_H
-- IMPDEFH.A
--
--!

package Impdef.Annex_H is

  type Scalar_To_Normalize is
       (   Id0,  Id1,  Id2,  Id3,  Id4,  Id5,  Id6,  Id7,  Id8,  Id9,
          Id10, Id11, Id12, Id13, Id14, Id15, Id16, Id17, Id18, Id19,
          Id20, Id21, Id22, Id23, Id24, Id25, Id26, Id27, Id28, Id29,
          Id30, Id31, Id32, Id33, Id34, Id35, Id36, Id37, Id38, Id39,
          Id40, Id41, Id42, Id43, Id44, Id45, Id46, Id47, Id48, Id49,
          Id50, Id51, Id52, Id53, Id54, Id55, Id56, Id57, Id58, Id59,
          Id60, Id61, Id62, Id63, Id64, Id65, Id66, Id67, Id68, Id69,
          Id70, Id71, Id72, Id73, Id74, Id75, Id76, Id77, Id78, Id79,
          Id80, Id81, Id82, Id83, Id84, Id85, Id86, Id87, Id88, Id89,
          Id90, Id91, Id92, Id93, Id94, Id95, Id96, Id97, Id98, Id99,
          IdA0, IdA1, IdA2, IdA3, IdA4, IdA5, IdA6, IdA7, IdA8, IdA9,
          IdB0, IdB1, IdB2, IdB3, IdB4, IdB5, IdB6 );

  -- NO MODIFICATION NEEDED TO TYPE SCALAR_TO_NORMALIZE.  DO NOT MODIFY.

  type Small_Number is range 1..100;

  -- NO MODIFICATION NEEDED TO TYPE SMALL_NUMBER.  DO NOT MODIFY.

--=====================================================================
  -- When the value documented in H.1(5) as the predictable initial value
  -- for an uninitialized object of the type Scalar_To_Normalize
  -- (an enumeration type containing 127 identifiers) is to be in the range
  -- Id0..IdB6, set the following constant to True; otherwise leave it set
  -- to False.

  Default_For_Scalar_To_Normalize_Is_In_Range : constant Boolean := False;
  --                                      MODIFY HERE AS NEEDED --- ^^^^^

--=====================================================================
  -- If the above constant Default_For_Scalar_To_Normalize_Is_In_Range is
  -- set True, the following constant must be set to the value documented
  -- in H.1(5) as the predictable initial value for the type
  -- Scalar_To_Normalize.

  Default_For_Scalar_To_Normalize : constant Scalar_To_Normalize := Id0;
  --                                      MODIFY HERE AS NEEDED --- ^^^

--=====================================================================
  -- When the value documented in H.1(5) as the predictable initial value
  -- for an uninitialized object of the type Small_Number
  -- (an integer type containing 100 values) is to be in the range
  -- 1..100, set the following constant to True; otherwise leave it set
  -- to False.

                                   3-17



PROCESSING INFORMATION

  Default_For_Small_Number_Is_In_Range : constant Boolean := False;
  --                               MODIFY HERE AS NEEDED --- ^^^^^

--=====================================================================
  -- If the above constant Default_For_Small_Number_Is_In_Range is
  -- set True, the following constant must be set to the value documented
  -- in H.1(5) as the predictable initial value for the type Small_Number.

  Default_For_Small_Number : constant Small_Number := 100;
  --                        MODIFY HERE AS NEEDED --- ^^^

--=====================================================================

end Impdef.Annex_H;

                                   3-18



                                                      PROCESSING INFORMATION

3.3  WITHDRAWN TESTS

At  the  time  of  this conformity assessment testing, the following 24 tests
were withdrawn from the ACATS.

     B37312B     BXC6A03     C390010     C392010     C392012     C42006A
     C48009A     C760007     C760012     C761006     C761008     C761009
     C9A005A     C9A008A     CD20001     CXC3004     CXD2005     CXD4009
     CXD5002     CXDB005     CXDC001     CXG2022     E28002B     LA1001F

                                   3-19



                                 APPENDIX A

                COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

A.1  Compilation System Options

The  compiler  options  of this Ada processor, as described in this Appendix,
are   provided   by  the  customer.   Unless  specifically  noted  otherwise,
references  in  this  Appendix  are to compiler documentation and not to this
report.

Compilation System Options
--------------------------

 Usage: gcc switches <sfile>

  -gnata     Assertions enabled. Pragma Assert and pragma Debug to be
             activated
  -gnatb     Generate brief messages to stderr even if verbose mode set
  -gnatc     Check syntax and semantics only (no code generation attempted)
  -gnate     Error messages generated immediately, not saved up till end
  -gnatE     Generate full dynamic elaboration checks
  -gnatf     Full errors. Multiple errors/line, all undefined references
  -gnatg     GNAT style checks enabled
  -gnati?    Identifier char set (?=1/2/3/4/8/p/f/n/w)
  -gnatj?    Wide character encoding method (?=n/h/u/s/e)
  -gnatknnn  Limit file names to nnn characters (k = krunch)
  -gnatl     Output full source listing with embedded error messages
  -gnatmnnn  Limit number of detected errors to nnn (1-999)
  -gnatn     Inlining of subprograms (apply pragma Inline across units)
  -gnatN     Inline all subprogram calls
  -gnato     Enable optional checks (overflow, stack check, elaboration checks
  -gnatp     Suppress all checks
  -gnatP     Enable generation of polling
  -gnatq     Don't quit, try semantics, even if parse errors
  -gnatr     Reference manual column layout required
  -gnats     Syntax check only
  -gnatt     Tree output file to be generated
  -gnatu     List units for this compilation
  -gnatv     Verbose mode. Full error output with source lines to stdout
  -gnatw?    Warning mode. (?=s/e for suppress/treat as error)
  -gnatW     Set wide character encoding method

                                    A-1



COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

  -gnatx?    Cross-reference level and switches (?=1/2/3/4/5/9/b/s)
  -gnatz?    Distribution stub generation (r/s for receiver/sender stubs)
  -gnat83    Enforce Ada 83 restrictions

Debug flags for compiler:
-------------------------

  -gnatda   Generate messages tracking semantic analyzer progress
  -gnatdb   Show encoding of type names for debug output
  -gnatdc   List names of units as they are compiled
  -gnatdd   Dynamic allocation of tables messages generated
  -gnatde   List the entity table
  -gnatdf   Full tree/source print (includes withed units)
  -gnatdg   Print source from tree (generated code only)
  -gnatdh   Generate listing showing loading of name table hash chains
  -gnatdi   Generate messages for visibility linking/delinking
  -gnatdj   Suppress "junk null check" for access parameter values
  -gnatdk   Generate GNATBUG message on abort, even if previous errors
  -gnatdl   Generate unit load trace messages
  -gnatdm   Allow VMS features even if not OpenVMS version
  -gnatdn   Generate messages for node/list allocation
  -gnatdo   Print source from tree (original code only)
  -gnatdp   Generate messages for parser scope stack push/pops
  -gnatdr   Generate parser resynchronization messages
  -gnatds   Print source from tree (including original and generated stuff)
  -gnatdt   Print full tree
  -gnatdu   Uncheck categorization pragmas
  -gnatdv   Output trace of overload resolution
  -gnatdw   Print trace of semantic scope stack
  -gnatdx   Force expansion on, even if no code being generated
  -gnatdy   Print tree of package Standard
  -gnatdz   Print source of package Standard
  -gnatdB   Output debug encoding of type names and variants
  -gnatdE   Apply elaboration checks to predefined units
  -gnatdG   Do not compile generics
  -gnatdL   Output trace information on elaboration checking
  -gnatdP   Do not check for controlled objects in preelaborable packages
  -gnatdX   Force use of zero-cost exception approach
  -gnatd1   Error msgs have node numbers where possible
  -gnatd2   Eliminate error flags in verbose form error messages
  -gnatd3   Dump bad node in Comperr on an abort
  -gnatd4   Inhibit automatic krunch of predefined library unit files
  -gnatd5   Debug output for tree read/write
  -gnatd6   Default access unconstrained to thin pointers
  -gnatd7   Do not output version & file time stamp in -gnatv or -gnatl mode
  -gnatd8   Force opposite endianness in packed stuff

General GCC options applicable to GNAT:
---------------------------------------

  -c       Compile or assemble the source files, but do not link.
  -O0      No code optimization (this is the default setting)
  -O1      Optimize.

                                    A-2



                               COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

  -O2      Optimize even more.
  -O3      Optimize yet more.

  -S       Stop after the stage of compilation proper; do not assemble.
           The output is an assembler code file for each non-assembler
           input file specified.

  -mieee   Generate ieee754 compatible code.

  -o file  Place output in file file. This applies regardless to whatever
           sort of output GCC is producing, whether it be an executable
           file or an object file.

  -v       Print the commands executed to run the stages of compilation.
           Also print the version number of the compiler driver program
           and of the preprocessor and the compiler proper.

  -g       Produce debugging information in the operating system's native
           format. GDB can work with this debugging information.

  -Bprefix This option specifies where to find the executables, libraries
           and data files of the compiler itself.

  -Idir    Specify library and source files search path

  -Ldir    Add directory dir to the list of directories to be searched
           for `-l'.

A.2  Linker Options

The linker options of this Ada implementation, as described in this Appendix,
are   provided   by  the  customer.   Unless  specifically  noted  otherwise,
references  in  this  Appendix  are  to  linker documentation and not to this
report.

Linker Options
--------------

Usage: gnatbind switches lfile

  -aOdir  Specify library files search path
  -aIdir  Specify source files search path
  -A      Generate binder program in Ada
  -b      Generate brief messages to stderr even if verbose mode set
  -c      Check only, no generation of binder output file
  -C      Generate binder program in C (default)
  -e      Output complete list of elaboration order dependencies
  -f      Full elaboration semantics. Follow Ada rules. No attempt to be kind
  -h      Horrible (worst-case) elaboration order
  -Idir   Specify library and source files search path
  -I-     Don't look for sources & library files in default directory

                                    A-3



COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

  -l      Output chosen elaboration order
  -mnnn   Limit number of detected errors to nnn (1-999)
  -n      No main program
  -o file give the output file name (default is b_xxx.c)
  -r      Rename generated main program from main to gnat_main
  -s      Require all source files to be present
  -t      Tolerate time stamp and other consistency errors
  -Tn     Enable or Disable time-slicing
  -v      Verbose mode. Error messages,header, summary output to stdout
  -wx     Warning mode. (x=s/e for suppress/treat as error)
  -x      Exclude source files (check object consistency only)
  lfile   Library file names

Usage: gnatmake  opts  name  {[-cargs opts] [-bargs opts] [-largs opts]}

  name  is a file name from which you can omit the .adb or .ads suffix

gnatmake switches:
  -a       Consider all files, even readonly ali files
  -c       Compile only, do not bind and link
  -f       Force recompilations of non predefined units
  -i       In place. Replace existing ali file, or put it with source
  -jnum    Use nnn processes to compile
  -k       Keep going after compilation errors
  -m       Minimal recompilation
  -M       List object file dependences for Makefile
  -n       Check objects up to date, output next file to compile if not
  -o name  Choose an alternate executable name
  -q       Be quiet/terse
  -v       Motivate all (re)compilations

  --GCC=command       Use this gcc command
  --GNATBIND=command  Use this gnatbind command
  --GNATLINK=command  Use this gnatlink command

Gnat/Gcc switches such as -g, -O, -gnato, etc.are directly passed to gcc

Source & Library search path switches:
  -aLdir  Skip missing library sources if ali in dir
  -Adir   like -aLdir -aIdir
  -aOdir  Specify library/object files search path
  -aIdir  Specify source files search path
  -Idir   Like -aIdir -aOdir
  -I-     Don't look for sources & library files in the default directory
  -Ldir   Look for program libraries also in dir

To pass an arbitrary switch to the Compiler, Binder or Linker:
  -cargs opts   opts are passed to the compiler
  -bargs opts   opts are passed to the binder
  -largs opts   opts are passed to the linker

                                    A-4



                                 APPENDIX B

                              POINTS OF CONTACT

Ada Conformace Assessment Laboratory

   Phil Brashear
   EDS Conformance Testing Center
   4646 Needmore Road, Bin 46
   P.O.  Box 24593
   Dayton OH  45424-0593
   U.S.A.
   Phone    : (937) 237-4510
   Internet : brashp@dysmailpo.deisoh.msd.eds.com

AdaConformity Assessment Authority

   Randall Brukardt
   ACAA
   P.O.  Box 1512
   Madison WI  53701
   U.S.A.
   Phone    : (608) 245-0375
   Internet : Rbrukardt@bix.com

For technical information about this Ada processor, contact:

   Robert Dewar
   Ada Core Technologies, Inc.
   73 Fifth Ave., Suite 11B
   New York NY 10003
   (212) 620-7300 (ext 100)
   dewar@gnat.com

                                    B-1



POINTS OF CONTACT

For sales information about this Ada processor, contact:

   Karen Syck
   Ada Core Technologies, Inc.
   73 Fifth Ave., Suite 11B
   New York NY 10003
   (212) 620-7300 (ext 118)
   syck@gnat.com or sales@gnat.com

                                    B-2



                                 APPENDIX C

                                 REFERENCES

[ACAP]         Ada Conformity Assessment Procedures, Version 1.1,
               EDS Conformance Testing Center, September 1998

[Ada95]        Reference Manual for the Ada Programming Language,
               ANSI/ISO/IEC 8652:1995

[Pro98]        Ada Conformity Assessment Authority Operating Procedures,
               Version 1.3, Ada Resource Association, October 1998

[UG97]         The Ada Compiler Validation Capability Version 2.1
               User's Guide, Revision 1, SAIC and CTA, March 1997

                                    C-1



REFERENCES

                              end of document

                            (REMOVE THIS PAGE)


