
 ACAL Control Number: EDS19981207INT02-2.1

 Ada Conformity Assessment Test Report
 Certificate Number: A990209E2.1-049
 AverStar Inc.
 AdaMagic for SHARC version 3.92
 Micron Millenia PII400 (400 MHz Pentium II)
 under Windows NT (Build 1381; Service Pack 3)
 with Analog Devices Visual DSP 4.0, =>
 Analog Devices SHARC 21060 under Eonic Virtuoso kernel, version 4.0

 (Final)
 11 February 1999

 Prepared By:
 Ada Conformity Assessment Laboratory
 EDS Conformance Testing Center
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton, OH 45424-0593
 U.S.A.

(c) Copyright 1998, Electronic Data Systems Corporation
This document is copyrighted. It may be reproduced by any means and by any
person or entity, but only in its entirety. Reproduction of any smaller part
of this report is prohibited.

 TABLE OF CONTENTS

Preface

Validation Certificate

Declaration of Conformance

CHAPTER 1 INTRODUCTION

 1.1 USE OF THIS REPORT. 1-1
 1.2 TEST CLASSES. 1-1
 1.3 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

 2.1 INAPPLICABLE TESTS. 2-1
 2.2 MODIFICATIONS 2-3
 2.3 UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED . . 2-4
 NEEDS ANNEXES

CHAPTER 3 PROCESSING INFORMATION

 3.1 CONFORMITY ASSESSMENT PROCESS 3-1
 3.2 MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES 3-2
 3.2.1 Macro Parameters. 3-3
 3.2.1.1 Package ImpDef. 3-5
 3.2.1.2 Package ImpDef.Annex_C. 3-11
 3.3 WITHDRAWN TESTS 3-14

APPENDIX A COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

APPENDIX B POINTS OF CONTACT

APPENDIX C REFERENCES

 i

 ACAL Control Number: EDS19981207INT02-2.1

PREFACE

This report documents the conformity assessment of an Ada processor. This
assessment was conducted in accordance with the Ada Conformity Assessment
Procedures of the Ada Conformity Assessment Laboratory (ACAL) named below and
with the Ada Conformity Assessment Authority Operating Procedures, Version
1.3. The Ada Conformity Assessment Test Suite (ACATS), Version 2.1, was used
for testing; The specific version identification is given below.

The successful completion of conformity assessment is the basis for the
issuance of a certificate of conformity and for subsequent registration of
related processors. A copy of the certificate A990209E2.1-049 which was
awarded for this assessment is presented on the following page. Conformity
assessment does not ensure that a processor has no nonconformities to the Ada
standard other than those, if any, documented in this report. The compiler
vendor declares that the tested processor contains no deliberate deviation
from the Ada standard; a copy of this Declaration of Conformity is presented
immediately after the certificate.

Base Test Suite Version ACATS 2.1 (VCS label A2_1F)
 (See Section 2.2 for details)
Location of Testing AverStar Inc.
 23 Fourth Avenue
 Burlington MA 01803
Test Completion Date 9 February 1999

This report has been reviewed and approved by the signatories below. These
organizations attest that, to the best of their knowledge, this report is
accurate and complete; however, they make no warrant, express or implied,
that omissions or errors have not occurred.

____________________________________ ___________________________________
Ada Conformity Assessment Laboratory Ada Conformity Assessment Authority
Phil Brashear Randall Brukardt
EDS Conformance Testing Center ACAA
4646 Needmore Road, Bin 46 P.O. Box 1512
P.O. Box 24593 Madison WI 53701
Dayton OH 45424-0593 U.S.A.
U.S.A.

 (Insert copy of certificate here)

Results Summary for A990209E2.1-049

 Specialized Needs Annexes

Note: Tests allocated to these annexes are processed only when the vendor
claims support.

 --
| SPECIALIZED | Total | With- | Passed | Inappli- | Unsup- |
NEEDS ANNEXES		Drawn		cable	ported
C Systems					
Programming	24	2	21	1	0
& required Section 13	161	1	160	0	0
(representation support)	---	---	---	---	---
	185	3	181	1	0
 --
D Real-Time					
Systems					
(which requires Annex C)	58	5	** not tested **		
 --
| E Distributed | | | | | |
| Systems | 26| 0| ** not tested ** |
 --
| F Information | | | | | |
| Systems | 21| 0| ** not tested ** |
 --
| | | | | | |
| G Numerics | 29| 1| ** not tested ** |
 --
| H Safety and | | | | | |
| Security | 30| 0| ** not tested ** |
 --

DECLARATION OF CONFORMITY
__

 Customer: AverStar Inc.

 Ada Conformity Assessment Laboratory: EDS Conformance Testing Center
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton OH 45424-0593
 U.S.A.

 ACATS Version: 2.1

 Ada Processor

 Ada Compiler Name and Version: AdaMagic for SHARC version 3.92

 Host Computer System: Micron Millenia PII400 (400 MHz Penntium II)
 Windows NT (Build 1381; Service Pack 3)
 with Analog Devices Visual DSP 4.0

 Target Computer System: Analog Devices SHARC 21060
 Eonic Virtuoso kernel, version 4.0

 Declaration

 I, the undersigned, declare that I have no knowledge of deliberate
 deviations from the Ada Language Standard ANSI/ISO/IEC 8652:1995,
 FIPS PUB 119-1 other than the omission of features as documented
 in this Conformity Assessment Summary Report.

 ______________________________ _____________
 Customer Signature Date

 CHAPTER 1

 INTRODUCTION

The Ada processor described above was tested in accordance with the Ada
Conformity Assessment Procedures of the ACAL and with Version 1.3 of the
Operating Procedures of the ACAA [Pro98]. Testing was accomplished using
Version 2.1 of the Ada Conformity Assessment Test Suite (ACATS), also known
as the Ada Compiler Validation Capability (ACVC). The ACATS checks the
conformity of an Ada processor to the Ada Standard [Ada95].

This Ada Conformity Assessment Test Report (ACATR) gives an account of the
testing of this Ada processor. For any technical terms used in this report,
the reader is referred to [Pro98]. A detailed description of the ACATS may
be found in the ACVC User's Guide [UG97].

1.1 USE OF THIS REPORT

Consistent with the national laws of the originating country, the ACAL and
ACAA may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). Certified status is awarded only to the processor
identified in this report. Copies of this report are available to the public
from the ACAL that performed this conformity assessment.

Questions regarding this report or the test results should be directed to the
ACAL which performed this conformity assessment or to the Ada Conformity
Assessment Authority. For all points of contact, see Appendix B.

1.2 TEST CLASSES

Compliance of Ada processors is tested by means of the ACATS. The ACATS
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
most Class L tests are expected to produce errors at compile time and link
time, respectively.

 1-1

INTRODUCTION

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK_FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 contains constants of type SYSTEM.ADDRESS.
These constants are used by selected Section 13 tests and by isolated tests
for other sections. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for the Input-Output
features of the Ada Standard, defined in Annex A of [Ada 95]. The operation
of REPORT and CHECK_FILE is checked by a set of executable tests. If these
units are not operating correctly, conformity testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the Class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada processor correctly detects violation of the
Ada Standard involving multiple, separately compiled units. In most Class L
tests, errors are expected at link time, and execution must not begin. Other
L tests may execute and report the appropriate result.

For some tests of the ACATS, certain implementation-specific values must be
supplied. Two insertion methods for the implementation-specific values are
used: a macro substitution on the source file level of the test, and linking
of a package that contains the implementation-specific values. Details are
described in [UG97]. A list of the values used for this processor, along
with the specification and body of the package (and children applicable to
any of Specialized Needs Annexes being tested) are provided in Section 3.2 of
this report.

In addition to these anticipated test modifications, changes may be required
to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this processor are described
in Section 2.2.

For the conformity assessment of each Ada processor, a customized test suite
is produced by the ACAL. This customization consists of making the
modifications described in the preceding paragraph, removing withdrawn tests
(see Section 2.1), and possibly removing some inapplicable tests (see Section
2.1 and [UG97]).

 1-2

 INTRODUCTION

1.3 DEFINITION OF TERMS

Acceptable A result that is explicitly allowed by the grading criteria
result of the test program for a grade of passed or inapplicable.

Ada compiler The software and any needed hardware that have to be added to
 a given host and target computer system to allow
 transformation of Ada programs into executable form and
 execution thereof.

Ada Compiler The means of checking conformity of Ada processors,
Validation consisting of tests, support programs, and a User's Guide.
Capability Also referred to as the Ada Conformity Assessment Test Suite.

Ada Conformity Alternate name for the ACVC (which see).
Assessment
Test Suite
(ACATS)

Ada Conformity An organization which carries out the procedures required to
Assessment assess the conformity of an Ada processor.
Laboratory

Ada Conformity The organization that provides coordination and technical
Assessment guidance for the Ada Conformity Assessment Laboratories.
Authority
(ACAA)

Ada An Ada processor.

Certified (Also "certified as conforming") The status granted to an
Status Ada processor by the award of an Ada Conformity Assessment
 Certificate.

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part
 of a program and also for all or part of the data necessary
 for the execution of the program; executes user-wriiten or
 user-designated programs; performs user-designated data
 manipulation, including arithmetic operations and logic
 operations; and that can execute programs that modify
 themselves during execution. A computer system may be a
 stand-alone unit or may consist of several inter-connected
 units.

Conformity Fulfillment by a product, process or service of all
 requirements specified.

Conformity The process of checking the conformity of an Ada processor
Assessment to the Ada programming language and of issing a certificate
 for that processor.

 1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an
 agreement with an ACAL which specifies the terms and
 conditions for ACAL services (of any kind) to be performed.

Declaration A formal statement from a customer assuring that conformity
of Conformity is realized or is attainable on the Ada processor for which
 certified status is realized.

Foundation An Ada package used by multiple tests. Foundation units are
Unit designed to be reusable. A valid foundation unit must be in
(Foundation the Ada library for those tests that are dependent on the
Code) foundation unit.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to
Test be irrelevant for the given Ada processor.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,
 input/output control, and data management.

Specialized One of annexes C through H of [Ada95]. Testing of one or
Needs Annex more specialized needs annexes is optional, and results for
 each tested annex are summarized in this report.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Unsupported A test for a language feature that is not required to be
Feature Test supported, because it is based upon a requirement stated in
 an Ada 95 Specialized Needs Annex.

Withdrawn Test A test found to be incorrect and not used in conformity
 testing. A test may be incorrect because it has an invalid
 test objective, fails to meet its test objective, or contains
 erroneous or illegal use of the Ada programming language.

 1-4

 CHAPTER 2

 IMPLEMENTATION DEPENDENCIES

2.1 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada processor. Reasons for a test's inapplicability may be
supported by documents issued by the ISO known as Ada Commentaries and
commonly referenced in the format AI95-ddddd. For this processor, the
following tests were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

 The following 17 tests check for the predefined type SHORT_INTEGER; for
 this processor, there is no such type:

 B36105C C45231B C45304B C45411B C45502B
 C45503B C45504B C45504E C45611B C45613B
 C45614B C45631B C45632B B52004E C55B07B
 B55B09D CD7101E

 C45231D and CD7101G check for a predefined integer type with a name
 other than INTEGER, LONG_INTEGER, or SHORT_INTEGER; for this processor,
 there is no such type.

 C45322A, C45523A, and C45622A check that the proper exception is raised
 if MACHINE_OVERFLOWS is TRUE and the results of various floating-point
 operations lie outside the range of the base type; for this processor,
 MACHINE_OVERFLOWS is FALSE.

 C45531M..P and C45532M..P (8 tests) check fixed-point operations for
 types that require a SYSTEM.MAX_MANTISSA of 47 or greater; for this
 processor, MAX_MANTISSA is less than 47.

 C4A012B checks that the proper exception is raised when
 FLOAT'MACHINE_OVERFLOWS is TRUE for negative powers of 0.0; for this
 processor, FLOAT'MACHINE_OVERFLOWS is FALSE.

 2-1

IMPLEMENTATION DEPENDENCIES

 C96005B uses values of type DURATION's base type that are outside the
 range of type DURATION; for this processor, the ranges are the same.

 CD1009C checks whether a length clause can specify a non-default size
 for a floating-point type; this processor does not support such sizes.

 BD8001A, BD8002A, BD8003A, BD8004A..C (3 tests), and AD8011A use machine
 code insertions; this processor provides no package MACHINE_CODE.

 The following 262 tests check operations on sequential, text, and direct
 access files; this processor does not support external files:

 CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
 CE2103A..D (4) CE2104A..D (4) CE2106A..B (2) CE2108E..H (4)
 CE2109A..C (3) CE2110A CE2110C CE2111A..C (3)
 CE2111E..G (3) CE2111I CE2120A..B (2) CE2201A..N (14)
 CE2203A CE2204A..D (4) CE2205A CE2206A
 CE2208B CE2401A..C (3) CE2401E..F (2) CE2401H..L (5)
 CE2403A CE2404A..B (2) CE2405B CE2406A
 CE2407A..B (2) CE2408A..B (2) CE2409A..B (2) CE2410A..B (2)
 CE2411A CE3102A..B (2) CE3102F..H (3) CE3102J..K (2)
 CE3103A CE3104A..C (3) CE3106A..B (2) CE3107A..B (2)
 CE3108A..B (2) CE3110A CE3112C..D (2) CE3114A
 CE3115A CE3119A EE3203A EE3204A
 CE3207A CE3301A CE3302A CE3304A
 CE3305A CE3401A CE3402A EE3402B
 CE3402C..D (2) CE3403A..C (3) CE3403E..F (2) CE3404B..D (3)
 CE3405A CE3405C..D (2) CE3406A..D (4) CE3407A..C (3)
 CE3408A..C (3) CE3409A CE3409C..E (3) EE3409F
 CE3410A CE3410C..E (3) CE3411A CE3411C
 CE3412A EE3412C CE3413A..C (3) CE3414A
 CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
 CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
 CE3706D CE3706F..G (2) CE3804A..J (10) CE3804M
 CE3804O..P (2) CE3805A..B (2) CE3806A..B (2) CE3806D..E (2)
 CE3806G..H (2) CE3902B CE3904A..B (2) CE3905A..C (3)
 CE3905L CE3906A..C (3) CE3906E..F (2) CXA8001..3 (3)
 CXA9001..2(2) CXAA001..18 (18) CXAB001 CXAC001..4 (4)
 CXACA01..2 (2) CXACB01..2 (2) CXACC01

 CXB4001..9 (9 tests) depend on the availability of an interface to
 COBOL; this processor does not support Cobol interfaces. (See Section
 2.2 re CXB4001, CXB4007, and CXB4009.)

 CXB5004..5 (2 tests) depend upon the existence of convention Fortran;
 this processor rejects the use of convention Fortran in Pragma Import.

 CXC6001 checks for incorrect usages of atomic and volatile elementary
 types. This processor does not support indivisible read/update for some
 types; the application of pragma atomic to a record type in line 65 is
 rejected at compile time by this processor.

 2-2

IMPLEMENTATION DEPENDENCIES

 CD2A53A CD30002 CD30003 CD92001 CDE0001
 CXAA016 CXC7001

 CD33002, as directed by the ACAA, was graded passed by code & processing
 modifications. This test checks that various Component_Sizes are able
 to be specified, with the proper results. But the Component_Size value
 specified at line 74 exceeds what this implementation must support (cf.
 AI95-00109/07), and so is rejected at compile time. This test was also
 processed with lines 73 & 74 commented out; the modified test was
 passed. The modified test can be found with VCS label A2_1F_002 in the
 ACATS Version Control System.

 CXB3013 assumes the existence of a C function "strdup" that is not an
 ANSI C standard function. The C compiler used in the testing does not
 provide such a function; hence file CXB30131.C was modified by
 inserting, at line 56, a definition of "strdup" that provides the
 expected functionality:
 char *strdup(char *s)
 char *result = (char *) malloc(sizeof(char)*strlen(s));
 return strcpy(result,s);
 The modified test can be found with VCS label A2_1F_002 in the ACATS
 Version Control System.

2.3 UNSUPPORTED FEATURES OF THE ADA 95 SPECIALIZED NEEDS ANNEXES

 As allowed by [Ada95], a processor need not support any of the
 capabilities specified by a Specialized Needs Annex, or it may support
 some or all of them. For conformity assessment testing, each set of
 tests for a particular Annex is processed only upon customer request,
 but is processed in full (even if the Ada processor provides only
 partial support). As required by [Ada95], the failure to support a
 requirement of a Specialized Needs Annex must be indicated by a
 compile-time rejection or by raising a run-time exception. When a test
 for a Specialized Needs Annex thus indicates non-support, the result is
 graded "unsupported" (rather than "inapplicable"). However, if such a
 test is accepted and reports FAILED, the result is graded "failed", and
 is considered evidence of non-conformity.

 The set of tests for each of the following Specialized Needs Annexes was
 not processed during this conformity assessment testing:

 Annex D, Real-Time Systems (all BXD*, CXD*, & LXD* files)
 Annex E, Distributed Systems (all BXE* & CXE* files)
 Annex F, Information Systems (all BXF* & CXF* files)
 Annex G, Numerics (all CXG* files)
 Annex H, Safety and Security (all BXH*, CXH*, & LXH* files)

 No tests for Annex C, Systems Programming, were graded "unsupported".

 2-4

 CHAPTER 3

 PROCESSING INFORMATION

3.1 CONFORMITY ASSESSMENT PROCESS

A full evaluation of the customer's self-tested results was conducted at the
ACAL's site.

Witness testing of this Ada processor was conducted at the
customer-designated site by a representative of the ACAL.

A floppy diskette containing the customized test suite (see Section 1.3) was
taken on-site by the ACAL representative for processing. The contents of the
floppy diskette were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada processor.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system and run.

Testing was performed using command scripts provided by the customer and
reviewed by the ACAL representative. See Appendix A for a complete listing
of the processing options for this processor. Appendix A also indicates the
default options.

 3-1

PROCESSING INFORMATION

The following explicit option settings were used during witness testing:

For adareg

 Option/Switch Effect

 -q Quiet mode -- suppress all inessential messages.

For compile

 Option/Switch Effect

 -lc Continuous source listing interspersed with messages.

 +mr msg_kind Enables the display of any messages of msg_kind
 for any recursive invocations of the compiler.

 -gc Generate BackEnd debugging information.

 -eo Turns on emitter optimizations (default).

 -q Quiet mode -- suppress all inessential messages.

For build

 Option/Switch Effect

 -g Build with debugging symbols.

 -se Enable unused segment elimination in linker (default).

 -q Quiet mode -- suppress all inessential messages.

Test output, compiler and linker listings, and job logs were captured on
floppy diskette and archived at the ACAL. The listings examined on-site by
the ACAL representative were also archived.

3.2 MACRO PARAMETERS AND IMPLEMENTATION-SPECIFIC VALUES

This section contains the macro parameters used for customizing the ACATS.
The meaning and purpose of these parameters are explained in [UG97]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN_LEN, also listed here. These values are expressed in a
symbolic notation, using placeholders as appropriate.

 3-2

 PROCESSING INFORMATION

3.2.1 Macro Parameters

Macro Parameter Macro Value
--

$MAX_IN_LEN 200

$BIG_ID1 AAA ... A1 (200 characters)

$BIG_ID2 AAA ... A2 (200 characters)

$BIG_ID3 AAA ... A3A ... A (200 characters)

$BIG_ID4 AAA ... A4A ... A (200 characters)

$BIG_STRING1 "AAA ... A" (200/2 characters)

$BIG_STRING2 "AAA ... A1" ((200/2)-1 characters)

$BLANKS " ... " (200-20 blanks)

$MAX_STRING_LITERAL "AAA ... A" (200 characters)

--

$ACC_SIZE 32

$ALIGNMENT 1

$COUNT_LAST 2147483647

$ENTRY_ADDRESS FCNDECL.DATA(4)'ADDRESS

$ENTRY_ADDRESS1 FCNDECL.DATA(5)'ADDRESS

$ENTRY_ADDRESS2 FCNDECL.DATA(6)'ADDRESS

$FIELD_LAST 2147483647

$FORM_STRING ""

$FORM_STRING2 "CANNOT_RESTRICT_FILE_CAPACITY"

$GREATER_THAN_DURATION 86_401.0

$ILLEGAL_EXTERNAL_FILE_NAME1 \NODIRECTORY\FILENAME

$ILLEGAL_EXTERNAL_FILE_NAME2 THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM

$INAPPROPRIATE_LINE_LENGTH -1

$INAPPROPRIATE_PAGE_LENGTH -1

$INTEGER_FIRST -2147483648

 3-3

PROCESSING INFORMATION

$INTEGER_LAST 2147483647

$LESS_THAN_DURATION -90_000.0

$MACHINE_CODE_STATEMENT NULL;

$MAX_INT 2147483647

$MIN_INT -2147483648

$NAME NO_SUCH_TYPE_AVAILABLE

$NAME_SPECIFICATION1 X2120A

$NAME_SPECIFICATION2 X2120B

$NAME_SPECIFICATION3 X3119A

$OPTIONAL_DISC OPTIONAL_DISC

$RECORD_DEFINITION RECORD DUMMY : INTEGER; END RECORD;

$RECORD_NAME NO_SUCH_MACHINE_CODE_TYPE

$TASK_SIZE 64

$TASK_STORAGE_SIZE 2048

$VARIABLE_ADDRESS FCNDECL.DATA(1)'ADDRESS

$VARIABLE_ADDRESS1 FCNDECL.DATA(2)'ADDRESS

$VARIABLE_ADDRESS2 FCNDECL.DATA(3)'ADDRESS

 3-4

 PROCESSING INFORMATION

Package ImpDef and Its Children

The package ImpDef is used by several tests of core language features.
Before use in testing, this package is modified to specify certain
implementation-defined features. In addition, package ImpDef has a child
package for each Specialized Needs Annex, each of which may need similar
modifications. The child packages are independent of one another, and are
used only by tests for their respective annexes.

This section presents the package ImpDef and each of the relevant child
packages as they were modified for this conformity assessment. In the
interests of simplifying this ACATR, the header comment block was removed
from each of the package files.

3.2.1.1 Package ImpDef
-- IMPDEF.A
--!
with Report;
with Ada.Text_IO;
with System.Storage_Elements;

package ImpDef is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following boolean constants indicate whether this validation will
 -- include any of annexes C-H. The values of these booleans affect the
 -- behavior of the test result reporting software.
 --
 -- True means the associated annex IS included in the validation.
 -- False means the associated annex is NOT included.

 Validating_Annex_C : constant Boolean := True;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_D : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_E : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_F : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_G : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_H : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-5

PROCESSING INFORMATION

 -- This is the minimum time required to allow another task to get
 -- control. It is expected that the task is on the Ready queue.
 -- A duration of 0.0 would normally be sufficient but some number
 -- greater than that is expected.

 Minimum_Task_Switch : constant Duration := 0.1;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the time required to activate another task and allow it
 -- to run to its first accept statement. We are considering a simple task
 -- with very few Ada statements before the accept. An implementation is
 -- free to specify a delay of several seconds, or even minutes if need be.
 -- The main effect of specifying a longer delay than necessary will be an
 -- extension of the time needed to run the associated tests.

 Switch_To_New_Task : constant Duration := 0.5; -- ewcc target
 -- ^^^ -- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the time which will clear the queues of other tasks
 -- waiting to run. It is expected that this will be about five
 -- times greater than Switch_To_New_Task.

 Clear_Ready_Queue : constant Duration := 5.0;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Some implementations will boot with the time set to 1901/1/1/0.0
 -- When a delay of Delay_For_Time_Past is given, the implementation
 -- guarantees that a subsequent call to Ada.Calendar.Time_Of(1901,1,1)
 -- will yield a time that has already passed (for example, when used in
 -- a delay_until statement).

 Delay_For_Time_Past : constant Duration := 0.1;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Minimum time interval between calls to the time dependent Reset
 -- procedures in Float_Random and Discrete_Random packages that is
 -- guaranteed to initiate different sequences. See RM A.5.2(45).

 Time_Dependent_Reset : constant Duration := 0.3;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Test CXA5013 will loop, trying to generate the required sequence
 -- of random numbers. If the RNG is faulty, the required sequence
 -- will never be generated. Delay_Per_Random_Test is a time-out value

 3-6

 PROCESSING INFORMATION

 -- which allows the test to run for a period of time after which the
 -- test is failed if the required sequence has not been produced.
 -- This value should be the time allowed for the test to run before it
 -- times out. It should be long enough to allow multiple (independent)
 -- runs of the testing code, each generating up to 1000 random
 -- numbers.

 Delay_Per_Random_Test : constant Duration := 1.0;
 -- ^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The time required to execute this procedure must be greater than the
 -- time slice unit on implementations which use time slicing. For
 -- implementations which do not use time slicing the body can be null.

 procedure Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This constant must not depict a random number generator state value.
 -- Using this string in a call to function Value from either the
 -- Discrete_Random or Float_Random packages will result in
 -- Constraint_Error (expected result in test CXA5012).

 Non_State_String : constant String := "By No Means A State";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This string constant must be a legal external tag value as used by
 -- CD10001 for the type Some_Tagged_Type in the representation
 -- specification for the value of 'External_Tag.

 External_Tag_Value : constant String := "implementation_defined";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^^^^^^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following address constant must be a valid address to locate
 -- the C program CD30005_1. It is shown here as a named number;
 -- the implementation may choose to type the constant as appropriate.

 --CD30005_1_Foreign_Address : constant System.Address :=
System.Null_Address;
 -- MODIFY HERE IF NEEDED --- ^
 -- MODIFY HERE AS REQUIRED --- ^^^^^^^^^^^^^

 function CD30005_1_Foreign_Address return System.Address;
 pragma import (c, CD30005_1_Foreign_Address, "_cd30005_2", "_cd30005_2");

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constant must be the external name resulting
 -- from the C compilation of CD30005_1. The string will be used as an

 3-7

PROCESSING INFORMATION

 -- argument to pragma Import.

 CD30005_1_External_Name : constant String := "_cd30005_1";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following constants should represent the largest default alignment
 -- value and the largest alignment value supported by the linker.
 -- See RM 13.3(35).

 Max_Default_Alignment : constant := 1;
 -- ^ --- MODIFY HERE AS NEEDED

 Max_Linker_Alignment : constant := 1;
 -- ^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the C compilation of CXB30130.C and CXB30131.C. The strings
 -- will be used as arguments to pragma Import.

 CXB30130_External_Name : constant String := "CXB30130";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB30131_External_Name : constant String := "CXB30131";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the COBOL compilation of CXB40090.CBL, CXB40091.CBL, and
 -- CXB40092.CBL. The strings will be used as arguments to pragma Import.

 CXB40090_External_Name : constant String := "CXB40090";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB40091_External_Name : constant String := "CXB40091";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB40092_External_Name : constant String := "CXB40092";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constants must be the external names resulting
 -- from the Fortran compilation of CXB50040.FTN, CXB50041.FTN,
 -- CXB50050.FTN, and CXB50051.FTN.
 --
 -- The strings will be used as arguments to pragma Import.
 --
 -- Note that the use of these four string constants will be split between
 -- two tests, CXB5004 and CXB5005.

 3-8

 PROCESSING INFORMATION

 CXB50040_External_Name : constant String := "CXB50040";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB50041_External_Name : constant String := "CXB50041";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB50050_External_Name : constant String := "CXB50050";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

 CXB50051_External_Name : constant String := "CXB50051";
 -- MODIFY HERE AS NEEDED --- ^^^^^^^^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following constants have been defined for use with the
 -- representation clause in FXACA00 of type Sales_Record_Type.
 --
 -- Char_Bits should be an integer at least as large as the number
 -- of bits needed to hold a character in an array.
 -- A value of 6 * Char_Bits will be used in a representation clause
 -- to reserve space for a six character string.
 --
 -- Next_Storage_Slot should indicate the next storage unit in the record
 -- representation clause that does not overlap the storage designated for
 -- the six character string.

 Char_Bits : constant := 32;
 -- MODIFY HERE AS NEEDED ---^

 Next_Storage_Slot : constant := 32;
 -- MODIFY HERE AS NEEDED ---^

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following string constant must be the path name for the .AW
 -- files that will be processed by the Wide Character processor to
 -- create the C250001 and C250002 tests. The Wide Character processor
 -- will expect to find the files to process at this location.

 Test_Path_Root : constant String :=
 --"/data/ftp/public/AdaIC/testing/acvc/95acvc/";
 -- ^^^ --- MODIFY HERE AS NEEDED
 "V:\ADA_MAGIC\ACVC_21\ADI\C2\";

 -- The following two strings must not be modified unless the .AW file
 -- names have been changed. The Wide Character processor will use
 -- these strings to find the .AW files used in creating the C250001
 -- and C250002 tests.

 Wide_Character_Test : constant String := Test_Path_Root & "c250001";
 Upper_Latin_Test : constant String := Test_Path_Root & "c250002";

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 3-9

PROCESSING INFORMATION

 -- The following instance of Integer_IO or Modular_IO must be supplied
 -- in order for test CD72A02 to compile correctly.
 -- Depending on the choice of base type used for the type
 -- System.Storage_Elements.Integer_Address; one of the two instances will
 -- be correct. Comment out the incorrect instance.

 package Address_Value_IO is
 new Ada.Text_IO.Modular_IO(System.Storage_Elements.Integer_Address);

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef;

 --==--

package body ImpDef is

 -- NOTE: These are example bodies. It is expected that implementors
 -- will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The time required to execute this procedure must be greater than the
 -- time slice unit on implementations which use time slicing. For
 -- implementations which do not use time slicing the body can be null.

 Procedure Exceed_Time_Slice is
 T : Integer := 0;
 Loop_Max : constant Integer := 100;
 begin
 for I in 1..Loop_Max loop
 T := Report.Ident_Int (1) * Report.Ident_Int (2);
 end loop;
 end Exceed_Time_Slice;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef;

 3-10

 PROCESSING INFORMATION

3.2.1.2 Package ImpDef.Annex_C
-- IMPDEFC.A
--!

with Ada.Interrupts.Names;

package ImpDef.Annex_C is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Interrupt_To_Generate should identify a non-reserved interrupt
 -- that can be predictably generated within a reasonable time interval
 -- (as specified by the constant Wait_For_Interrupt) during testing.

 Interrupt_To_Generate: constant Ada.Interrupts.Interrupt_ID :=
-- Ada.Interrupts.Interrupt_ID'First; -- to allow trivial compilation
 Ada.Interrupts.Names.SFT1I;
 -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- Wait_For_Interrupt should specify the reasonable time interval during
 -- which the interrupt identified by Interrupt_To_Generate can be
 -- expected to be generated.

-- Wait_For_Interrupt : constant := 10.0;
 Wait_For_Interrupt : constant := 1.0;
 -- ^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Enable_Interrupts should enable interrupts, if this
 -- is required by the implementation. [See additional notes on this
 -- procedure in the package body.]

 procedure Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Generate_Interrupt should generate the interrupt
 -- identified by Interrupt_To_Generate within the time interval
 -- specified by Wait_For_Interrupt. [See additional notes on this
 -- procedure in the package body.]

 procedure Generate_Interrupt;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_C;

 --==--

 3-11

PROCESSING INFORMATION

with System.RTS.TGT.Kernel.Interrupts;
with Report;

package body ImpDef.Annex_C is

 -- NOTE: These are example bodies. It is expected that implementors
 -- will write their own versions of these routines.

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Enable_Interrupts should enable interrupts, if this
 -- is required by the implementation.
 --
 -- The default body is null, since it is expected that most implementations
 -- will not need to perform this step.
 --
 -- Note that Enable_Interrupts will be called only once per test.

 procedure Enable_Interrupts is
 begin
 null;

 -- ^^^^^^^^^^^^^^^^^^^^ MODIFY THIS BODY AS NEEDED ^^^^^^^^^^^^^^^^^^^^
 -- No modifications needed; interrupts are normally enabled.

 end Enable_Interrupts;

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The procedure Generate_Interrupt should generate the interrupt
 -- identified by Interrupt_To_Generate within the time interval
 -- specified by Wait_For_Interrupt.
 --
 -- The default body assumes that an interrupt will be generated by some
 -- physical act during testing. While this approach is acceptable, the
 -- interrupt should ideally be generated by appropriate code in the
 -- procedure body.
 --
 -- Note that Generate_Interrupt may be called multiple times by a single
 -- test. The code used to implement this procedure should account for this
 -- possibility.

 procedure Generate_Interrupt is
 begin
 Report.Comment (". >>>>> GENERATE THE INTERRUPT NOW <<<<< ");

 System.RTS.TGT.Kernel.Interrupts
 .Generate_Interrupt(Interrupt_To_Generate);

 -- ^^^^^^^^^^^^^^^^^^^^ MODIFY THIS BODY AS NEEDED ^^^^^^^^^^^^^^^^^^^^

 end Generate_Interrupt;

 3-12

 PROCESSING INFORMATION

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

end ImpDef.Annex_C;

 3-13

PROCESSING INFORMATION

3.3 WITHDRAWN TESTS

At the time of this conformity assessment testing, the following 25 tests
were withdrawn from the ACATS.

 B37312B BXC6A03 C390010 C392010 C392012 C42006A
 C48009A C760007 C760012 C761006 C761008 C761009
 C9A005A C9A008A CD20001 CXC3004 CXD2005 CXD4009
 CXD5002 CXDB005 CXDC001 CXG2022 E28002B EA3004G
 LA1001F

 3-14

 APPENDIX A

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

A.1 Compilation System Options

The compiler options of this Ada processor, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report.

Usage: adareg [options ...] [file_or_directory ...]

 file_or_directory A file or a directory name (string). There
 may be any number of these. Any file is
 registered. For a directory, all recognized
 Ada source files in that directory that have
 not been registered, or have been modified
 since last registration, are registered.

Options Summary:

 -help or -h Display this help message.
 -v Run verbosely.
 -0 Identifies executable version number.
 -q Quiet mode -- suppress all inessential messages..
 -cl Create the library file if it does not exist.
 -s unit_name Autoregister files in search of 'unit_name'
 DECL.
 -b unit_name Autoregister files in search of 'unit_name'
 BODY.
 -all Explicitly register all new source files in
 all source directories of the library.
 -no Do not invalidate old files when explicitly
 registering.
 -ut unit_name unit_type
 Autoregister files in search of 'unit_name' of
 'unit_type'. This is for internal use, when
 adareg is called by other tools.
 unit_name A string.
 unit_type An enumeration integer corresponding to a unit

 A-1

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

 type.

 Options and file_or_directories are cumulative and processed in
 the order given, except that any explicit registration request
 causes all autoregister requests to be ignored. See user
 documentation for more information on explicit and implicit (auto)
 registration.

SHARC AdaMagic: adareg 3.80 (BETA)
 Copyright (c) 1994-1998 Intermetrics, Inc. All Rights Reserved.

 A-2

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

Usage: V:\ADA_MA~1\ADI\BIN\ADA21K.EXE [options ...] [file ...]

 file A source file to be compiled. There may be
 multiple files specified.

Options Summary:

 -help or -h Display this help message.

Listing Options

 -lc Continuous source listing interspersed with messages.
 -le Source listing only if there are errors.
 -lf filename Use 'filename' for listing, instead of default.
 -lp Paginated source listing interspersed with messages.
 -lr Relevant-only source listing, (only source lines
 for which there are error or warning messages).
 -lx Cross reference listing (turns on -xr).
 -pl length Set page length of source listing file to length.
 -pw width Set page width of source listing file to width.

Message Options

 -m msg_kind Suppresses the display of any messages of msg_kind
 for the current invocation of the compiler.
 +m msg_kind Enables the display of any messages of msg_kind
 for the current invocation of the compiler.
 -mr msg_kind Suppresses the display of any messages of msg_kind
 for any recursive invocations of the compiler.
 +mr msg_kind Enables the display of any messages of msg_kind
 for any recursive invocations of the compiler.

 The valid values for msg_kind:
 a - all messages
 d - implementation-dependent warning messages
 e - error messages
 i - information messages
 n - nyi messages
 w - general warning messages
 r - redundant messages

 By default, all messages except information and redundant messages are
 displayed. For recursive invocations, no messages are displayed by
 default. For convenience, "-m a" will suppress all messages *except*
 errors.

Miscellaneous Options

 -a Analyzer only, don't run the Emitter or BackEnd.
 -c FrontEnd only, don't run the BackEnd.
 -e count Stop reporting errors after the count but keep
 on going.
 -eo Turns on emitter optimizations (default).
 -f Force generation of .c even if there are errors.

 A-3

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

A.2 Linker Options

The linker options of this Ada processor, as described in this Appendix, are
provided by the customer. Unless specifically noted otherwise, references in
this Appendix are to linker documentation and not to this report.

Usage: adab21k [options ...] [unit ...]

 unit The main unit to be linked. There may be multiple units specified.

Options Summary:

 -help or -h Display this help message.

 -0 Identifies executable version numbers (default).
 -2106<0|1|2> Instructs back end to produce code suitable
 for the specified DSP (-21062 is the default).
 -f Force linking, despite any prelinker errors.
 -g Build with debugging symbols.
 -ke Keep all intermediate files.
 -ldf file Use "file" as the linker description file.
 -ll option Pass "option" to linker.
 -na No autoregistration.
 -nc No recompilations.
 -nl No linking (prelink, but do not call linker).
 -no No "object out of date" recompilations.
 -nse Disable unused segment elimination in linker.
 -o file Place linked output in "file" instead of using
 the default filename.
 -ol object Pass "object" directly to linker.
 -pre unit Preelaborate "unit".
 -pru unit Use certain pragmas of "unit" to override
 main unit pragmas.
 -q Quiet mode -- suppress all inessential messages.
 -r Use a more "friendly" elaboration order.
 -se Enable unused segment elimination in linker (default).
 -v Provide verbose output.

 A-5

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

The following pages contain a sample test script.

==

Testing Script

==

@rem = '--*-Perl-*--
@echo off
if "%OS%" == "Windows_NT" goto WinNT
perl -x -S "%0" %1 %2 %3 %4 %5 %6 %7 %8 %9
goto endofperl
:WinNT
perl -x -S "%0" %*
if NOT "%COMSPEC%" == "%SystemRoot%\system32\cmd.exe" goto endofperl
if %errorlevel% == 9009 echo You do not have Perl in your PATH.
goto endofperl
@rem ';
#!perl
#line 14
#
#
sample perl script to compile/build/execute an ACVC
executes on a WinNT HOST
#
This file is a .bat file which when run automaticly reinvokes perl on
itself
#
#

#print out some help
if (not @ARGV) {
 print <<EOP;
sample_acvc_test_script procedure [test_source...]

 procedure == name of ADA procedure to build
 test_source == ADA source files to compile

 execution output of procedure is placed in a .out file

EOP
 ;
 exit;
}

#parse args
$PROCEDURE = shift;
@SOURCE = @ARGV;

#script variables
$ACVC_SUPPORT_DIR = q(s:\ada_magic\acvc_21\adi\support);

 A-6

 COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

$EXECUTABLE = "$PROCEDURE.exe";
$EXE_OUTPUT = "$PROCEDURE.out";

#set up tools to run
the only tricky bit here is the target_downloader
this program handles the remote execution of the executable
on the test board
$ENV{ADA_MAGIC} = q(s:\ada_magic\adi);
$COMPILER = "$ENV{ADA_MAGIC}\\bin\\ada21k.exe";
$BUILDER = "$ENV{ADA_MAGIC}\\bin\\adab21k.exe";
$REGISTER = "$ENV{ADA_MAGIC}\\bin\\adareg.exe";
$TARGET_DOWNLOADER = "$ENV{ADA_MAGIC}\\bin\\exe_test.bat";

#are there ADA source files to compile?
if (@SOURCE) {
 #register support files
 print <<MSG;

Registering support files

MSG
 ;
 print `$REGISTER $ACVC_SUPPORT_DIR`;

 #compile the source files
 print <<MSG;

Compiling: @SOURCE

MSG
 ;
 print `$COMPILER @SOURCE`;
}

#build the ADA procedure and produce the executable
print <<MSG;

Building: $PROCEDURE

MSG
;
print `$BUILDER $PROCEDURE`;

#did we fail?
if (not -e $EXECUTABLE and not -s $EXECUTABLE) {
 die "ERROR: executable not created for $PROCEDURE.\n";
}

#run the executable
print <<MSG;

Executing: $EXECUTABLE

 A-7

COMPILATION SYSTEM OPTIONS AND LINKER OPTIONS

MSG
;

#note, this style of output capture doesn't work on Win95
print `$TARGET_DOWNLOADER $EXECUTABLE > $EXE_OUTPUT`;

#echo the test output back to the screen
print `type $EXE_OUTPUT`;

#were done
print <<MSG;

Done: $PROCEDURE

MSG
;

#clean up, delete executable
print `del $EXECUTABLE`;

#
brief command explanation
#
REGISTER Registers ADA source files into the current program library.
COMPILER Compiles the ADA source files into objects.
BUILDER Links the required objects needed for the specified procedure.
If some required files have not been compiled, the builder
automaticly invokes the compiler on the required ADA source files.
type Echos the contents of the given file to the screen.
del Deletes the specified file.
TARGET_DOWNLOADER In order to run the resulting executable, it needs to
be downloaded to the test board, run, and the results
returned in a usable fasion. This program takes care
of that.
#

__END__
:endofperl

 A-8

 APPENDIX B

 POINTS OF CONTACT

Ada Conformance Assessment Laboratory

 Phil Brashear
 EDS Conformance Testing Center
 4646 Needmore Road, Bin 46
 P.O. Box 24593
 Dayton OH 45424-0593
 U.S.A.
 Phone : (937) 237-4510
 Internet : brashp@dysmailpo.deisoh.msd.eds.com

Ada Conformity Assessment Authority

 Randall Brukardt
 ACAA
 P.O. Box 1512
 Madison WI 53701
 U.S.A.
 Phone : (608) 245-0375
 Internet : Rbrukardt@bix.com

For technical information about this Ada processor, contact:

 Bob Duff
 AverStar Inc.
 23 Fourth Avenue
 Burlington MA 01803-3303
 (781)-221-6990
 bobduff@averstar.com

 B-1

POINTS OF CONTACT

For sales information about this Ada processor, contact:

 Gerald McGuire
 Analog Devices Inc.
 3 Technology Way
 Norwood MA 02062
 (781)-329-4700
 gerald.mcguire@analog.com

 B-2

 APPENDIX C

 REFERENCES

[ACAP] Ada Conformity Assessment Procedures, Version 1.1,
 EDS Conformance Testing Center, September 1998

[Ada95] Reference Manual for the Ada Programming Language,
 ANSI/ISO/IEC 8652:1995

[Pro98] Ada Conformity Assessment Authority Operating Procedures,
 Version 1.3, Ada Resource Association, October 1998

[UG97] The Ada Compiler Validation Capability Version 2.1
 User's Guide, Revision 1, SAIC and CTA, March 1997

 C-1

REFERENCES

 end of document

 (REMOVE THIS PAGE)

