Ada Conformity Assessment Authority |
Home |
Conformity Assessment | Test Suite |
ARG | Ada Standard |

In the strict mode, the predefined arithmetic operations
of a fixed point type shall satisfy the accuracy requirements specified
here and shall avoid or signal overflow in the situations described.

The accuracy requirements for the predefined fixed
point arithmetic operations and conversions, and the results of relations
on fixed point operands, are given below.

The operands of the fixed point adding operators,
absolute value, and comparisons have the same type. These operations
are required to yield exact results, unless they overflow.

Multiplications and divisions are allowed between
operands of any two fixed point types; the result has to be (implicitly
or explicitly) converted to some other numeric type. For purposes of
defining the accuracy rules, the multiplication or division and the conversion
are treated as a single operation whose accuracy depends on three types
(those of the operands and the result). For decimal fixed point types,
the attribute T'Round may be used to imply explicit conversion with rounding
(see 3.5.10).

When the result type is a floating point type, the
accuracy is as given in G.2.1. For
some combinations of the operand and result types in the remaining cases,
the result is required to belong to a small set of values called the
*perfect result set*; for other combinations,
it is required merely to belong to a generally larger and implementation-defined
set of values called the *close result set*. When the result type
is a decimal fixed point type, the perfect result set contains a single
value; thus, operations on decimal types are always fully specified.

When one operand of a fixed-fixed multiplication
or division is of type *universal_real*, that operand is not implicitly
converted in the usual sense, since the context does not determine a
unique target type, but the accuracy of the result of the multiplication
or division (i.e., whether the result has to belong to the perfect result
set or merely the close result set) depends on the value of the operand
of type *universal_real* and on the types of the other operand and
of the result.

For a fixed point multiplication
or division whose (exact) mathematical result is *v*,
and for the conversion of a value *v*
to a fixed point type, the perfect result set and close result set are
defined as follows:

If the result type
is an ordinary fixed point type with a *small* of *s*,

if *v*
is an integer multiple of *s*, then the
perfect result set contains only the value *v*;

otherwise, it contains the integer
multiple of *s* just below *v*
and the integer multiple of *s* just
above *v*.

The close result set is an implementation-defined
set of consecutive integer multiples of *s*
containing the perfect result set as a subset.

If the result type
is a decimal type with a *small* of *s*,

if *v*
is an integer multiple of *s*, then the
perfect result set contains only the value *v*;

otherwise, if truncation applies,
then it contains only the integer multiple of *s*
in the direction toward zero, whereas if rounding applies, then it contains
only the nearest integer multiple of *s*
(with ties broken by rounding away from zero).

The close result set is an implementation-defined
set of consecutive integer multiples of *s*
containing the perfect result set as a subset.

If the result type
is an integer type,

if *v*
is an integer, then the perfect result set contains only the value *v*;

otherwise, it contains the integer
nearest to the value *v* (if *v*
lies equally distant from two consecutive integers, the perfect result
set contains the one that is further from zero).

The close result set is an implementation-defined
set of consecutive integers containing the perfect result set as a subset.

The result of a fixed point multiplication or division
shall belong either to the perfect result set or to the close result
set, as described below, if overflow does not occur. In the following
cases, if the result type is a fixed point type, let *s*
be its *small*; otherwise, i.e. when the result type is an integer
type, let *s* be 1.0.

For a multiplication or division neither of whose
operands is of type *universal_real*, let *l*
and *r* be the *smalls* of the left
and right operands. For a multiplication, if (*l*
· *r*) / *s*
is an integer or the reciprocal of an integer (the *smalls* are
said to be “compatible” in this case), the result shall belong
to the perfect result set; otherwise, it belongs to the close result
set. For a division, if *l* / (*r*
· *s*) is an integer or the reciprocal
of an integer (i.e., the *smalls* are compatible), the result shall
belong to the perfect result set; otherwise, it belongs to the close
result set.

For a multiplication or division having one *universal_real*
operand with a value of *v*, note that
it is always possible to factor *v* as
an integer multiple of a “compatible” *small*, but the
integer multiple may be “too big.” If there exists a factorization
in which that multiple is less than some implementation-defined limit,
the result shall belong to the perfect result set; otherwise, it belongs
to the close result set.

A multiplication P * Q of an operand of a fixed point
type F by an operand of an integer type I, or vice-versa, and a division
P / Q of an operand of a fixed point type F by an operand of an integer
type I, are also allowed. In these cases, the result has a type of F;
explicit conversion of the result is never required. The accuracy required
in these cases is the same as that required for a multiplication F(P
* Q) or a division F(P / Q) obtained by interpreting the operand of the
integer type to have a fixed point type with a *small* of 1.0.

The accuracy of the result of a conversion from an
integer or fixed point type to a fixed point type, or from a fixed point
type to an integer type, is the same as that of a fixed point multiplication
of the source value by a fixed point operand having a *small* of
1.0 and a value of 1.0, as given by the foregoing rules. The result of
a conversion from a floating point type to a fixed point type shall belong
to the close result set. The result of a conversion of a *universal_real*
operand to a fixed point type shall belong to the perfect result set.

The possibility of overflow in the result of a predefined
arithmetic operation or conversion yielding a result of a fixed point
type T is analogous to that for floating point types, except for being
related to the base range instead of the safe range. If
all of the permitted results belong to the base range of T, then the
implementation shall deliver one of the permitted results; otherwise,

if T'Machine_Overflows is True,
the implementation shall either deliver one of the permitted results
or raise Constraint_Error;

if T'Machine_Overflows is False, the result is
implementation defined.

Ada 2005 and 2012 Editions sponsored in part by **Ada-Europe**